RT Book, Section A1 Godley, Lucy A. A1 Sukhanova, Madina A1 Raca, Gordana A1 Le Beau, Michelle M. A2 Kaushansky, Kenneth A2 Lichtman, Marshall A. A2 Prchal, Josef T. A2 Levi, Marcel M. A2 Press, Oliver W. A2 Burns, Linda J. A2 Caligiuri, Michael SR Print(0) ID 1121089437 T1 Cytogenetics and Genetic Abnormalities T2 Williams Hematology, 9e YR 2015 FD 2015 PB McGraw-Hill Education PP New York, NY SN 9780071833004 LK accessmedicine.mhmedical.com/content.aspx?aid=1121089437 RD 2024/04/23 AB SUMMARYCytogenetic and genetic analysis provides pathologists and clinicians with a powerful tool for the diagnosis and classification of hematologic malignant diseases. The detection of an acquired, somatic mutation establishes the diagnosis of a neoplastic disorder and rules out hyperplasia, dysplasia, or morphologic changes from toxic injury or vitamin deficiency. Specific cytogenetic and genetic abnormalities have been identified that are very closely, and sometimes uniquely, associated with morphologically distinct subsets of leukemia or lymphoma, enabling clinicians to predict their clinical course and likelihood of responding to particular treatments. The detection of one of these recurring abnormalities is helpful in establishing the diagnosis and adds information of prognostic importance. In many cases, the prognostic information derived from cytogenetic and genetic analysis is independent of that provided by other clinical features. Patients with favorable genetic prognostic features benefit from standard therapies with a well-known spectra of toxicities, whereas those with less-favorable clinical and cytogenetic or genetic characteristics may be better treated with more intensive or investigational therapies. Pretreatment cytogenetic analysis also can be useful in choosing between post-remission therapies that differ widely in cost, acute and chronic morbidity, and effectiveness. The appearance of new abnormalities in the karyotype of a patient under observation often signals clonal evolution and more aggressive behavior. The disappearance of a chromosomal abnormality present at diagnosis is an important indicator of complete remission following treatment, and its reappearance may herald disease recurrence.