RT Book, Section A1 High, Katherine A. A1 Brenner, Malcolm K. A2 Jameson, J. Larry A2 Fauci, Anthony S. A2 Kasper, Dennis L. A2 Hauser, Stephen L. A2 Longo, Dan L. A2 Loscalzo, Joseph SR Print(0) ID 1156515239 T1 Gene and Cell Based Therapy in Clinical Medicine T2 Harrison's Principles of Internal Medicine, 20e YR 2018 FD 2018 PB McGraw-Hill Education PP New York, NY SN 9781259644016 LK accessmedicine.mhmedical.com/content.aspx?aid=1156515239 RD 2024/03/28 AB Gene transfer is a novel area of therapeutics in which the active agent is a nucleic acid sequence rather than a protein or small molecule. Because delivery of naked DNA or RNA to a cell is an inefficient process, most gene transfer is carried out using a vector, or gene delivery vehicle. These vehicles have generally been engineered from viruses by deleting some or all of the viral genome and replacing it with the therapeutic gene of interest under the control of a suitable promoter (Table 458-1). Gene transfer strategies can thus be described in terms of three essential elements: (1) a vector; (2) a gene to be delivered, sometimes called the transgene; and (3) a physiologically relevant target cell to which the DNA or RNA is delivered. The series of steps in which the vector and donated DNA enter the target cell and express the transgene is referred to as transduction. Gene delivery can take place in vivo, in which the vector is directly injected into the patient, or, in the case of hematopoietic and some other target cells, ex vivo, with removal of the target cells from the patient, followed by return of the gene-modified autologous cells to the patient after manipulation in the laboratory. The latter approach effectively combines gene transfer techniques with cellular therapies (Chap. 473).