Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!


Cardiac arrhythmias are the most common cause of death in patients with a myocardial infarction or terminal heart failure. They increase in prevalence in the elderly and atrial fibrillation is particularly common in this group. Arrhythmias are also the most serious manifestation of digitalis toxicity and are often associated with anesthetic procedures, hyperthyroidism, and electrolyte disorders. The drugs used for arrhythmias fall into five major groups or classes, but most have very low therapeutic indices and when feasible, nondrug therapies (cardioversion, pacemakers, ablation, implanted defibrillators) are used. In addition, conditions associated with certain arrhythmias, especially increased risk of thromboembolism in atrial fibrillation, must be treated with appropriate drugs from other groups (eg, anticoagulants).



A. Nature of Arrhythmias

Normal electrical cardiac function (normal sinus rhythm, NSR) is dependent on generation of an impulse in the normal sinoatrial (SA) node pacemaker and its conduction through the atrial muscle, through the atrioventricular (AV) node, through the Purkinje conduction system, to the ventricular muscle (Figure 14–1) where it is finally extinguished after activating all the myocytes. A new impulse must arise in the SA node for the next conducted action potential. Normal pacemaking and conduction require normal action potentials (dependent on sodium, calcium, and potassium channel activity) under appropriate autonomic control. Arrhythmias (also called dysrhythmias) are therefore defined by exclusion, that is, an arrhythmia is any cardiac rhythm that is not normal sinus rhythm.


Schematic representation of the heart and normal cardiac electrical activity (intracellular recordings from areas indicated and ECG). The ECG is the body surface manifestation of the depolarization and repolarization waves of the heart. The P wave is generated by atrial depolarization, the QRS by ventricular muscle depolarization, and the T wave by ventricular repolarization. The PR interval is a measure of conduction time from atrium to ventricle through the atrioventricular (AV) node, and the QRS duration indicates the time required for all of the ventricular cells to be activated (ie, the intraventricular conduction time). The QT interval reflects the duration of the ventricular action potential. SA, sinoatrial. (Reproduced with permission from Katzung BG, Vanderah TW: Basic & Clinical Pharmacology, 15th ed. New York, NY: McGraw Hill; 2021.)

Abnormal automaticity and abnormal conduction are the two major mechanisms for arrhythmias. Abnormalities of conduction include reentrant conduction and less commonly, complete block. A few of the clinically important arrhythmias are atrial flutter, atrial fibrillation (AFib), atrioventricular nodal reentry (a common type of supraventricular tachycardia [SVT]), premature ventricular beats (PVBs), ventricular tachycardia (VT), and ventricular fibrillation (VF). Examples of electrocardiographic (ECG) recordings of normal sinus rhythm and some of these common arrhythmias are shown in Figure 14–2. AFib is the most common serious arrhythmia and, as noted above, is particularly common in older patients. It is often symptomatic and ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.