1. Pearce SH, Merriman TR: Genetic progress towards the molecular basis of autoimmunity. Trends Mol Med 12(2):90-98, 2006
2. Murphy K, Travers P, Walport M: Autoimmunity and transplantation. In: Janeway's Immunobiology, 7th edition. New York and London, Garland Science, 2008, pp. 599-609
3. Goodnow CC et al: Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435(7042):590-597, 2005
4. Ronnblom L, Alm GV: An etiopathogenic role for the type I IFN system in SLE. Trends Immunol 22(8):427-431, 2001
5. Ronnblom L, Alm GV: A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med. 194(12):F59-F63, 2001
6. Vratsanos GS et al: CD4(+) T cells from lupus-prone mice are hyperresponsive to T cell receptor engagement with low and high affinity peptide antigens. A model to explain spontaneous t cell activation in lupus. J Exp Med 193(3):329-338, 2001
7. Wandstrat A, Wakeland E: The genetics of complex autoimmune diseases: Non-MHC susceptibility genes. Nat Immunol 2(9):802-809, 2001
8. Jones EY et al: MHC class II proteins and disease: A structural perspective. Nat Rev Immunol 6(4):271-282, 2006
9. Vratsanos G, Kang I, Craft J: Systemic lupus erythematosus. In: Samter's Immunologic Diseases, vol. 2, 6th edition, edited by KF Austen, MM Frank, JP Atkinson, H Cantor. Philadelphia, Lippincott Williams & Wilkins, 2001, pp. 475-495
10. Rioux JD et al: Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci U S A 106(44):18680-18685, 2009
11. Gregersen PK, Olsson LM: Recent advances in the genetics of autoimmune disease. Annu Rev Immunol 27:363-391, 2009
12. Aaltonen J et al: An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. The Finnish-German APECED Consortium. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Nat Genet 17(4):399-403, 1997
13. Nagamine K et al: Positional cloning of the APECED gene. Nat Genet 17(4):393-398, 1997
14. Kuroda N et al: Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol 174(4):1862-1870, 2005
15. Rizzi M et al: Disruption of immunological tolerance: Role of AIRE gene in autoimmunity. Autoimmun Rev 5(2):145-147, 2006
16. Serrano NC, Millan P, Paez MC: Non-HLA associations with autoimmune diseases. Autoimmun Rev 5(3):209-214, 2006
17. Salomon B, Bluestone JA: Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225-252, 2001
18. Xu AP, Yin PD, Su XY: [Association of CTLA-4 promoter -1722 polymorphism with systemic lupus erythematosus in Chinese.]. Di Yi Jun Yi Da Xue Xue Bao 24(10):1107-1112, 2004
19. Ahmed S et al: Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population. Rheumatology (Oxford) 40(6):662-667, 2001
20. Ueda H et al: Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423(6939):506-511, 2003
21. Okazaki T, Honjo T: The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27(4):195-201, 2006
22. Prokunina L et al: A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32(4):666-669, 2002
23. Prokunina L et al: Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum 50(6):1770-1773, 2004
24. Ferreiros-Vidal I et al: Association of PDCD1 with susceptibility to systemic lupus erythematosus: Evidence of population-specific effects. Arthritis Rheum 50(8):2590-2597, 2004
25. Vang T et al: Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37(12):1317-1319, 2005
26. Plenge RM et al: Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39(12):1477-1482, 2007
27. Nair RP et al: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41(2):199-204, 2009
28. Thomson W et al: Rheumatoid arthritis association at 6q23. Nat Genet 39(12):1431-1433, 2007
29. Han JW et al: Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41(11):1234-1237, 2009
30. Plenge RM et al: TRAF1-C5 as a risk locus for rheumatoid arthritis–a genomewide study. N Engl J Med 357(12):1199-1209, 2007
31. Cargill M et al: A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80(2):273-290, 2007
32. Duerr RH et al: A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314(5804):1461-1463, 2006
33. van Beelen AJ et al: Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 7(5):374-381, 2007
34. Liu Y et al: A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4(3):e1000041, 2008
35. Takai T: Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol 25(1):1-18, 2005
36. Koene HR et al: The Fc gammaRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 41(10):1813-1818, 1998
37. Kyogoku C et al: Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: Contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46(5):1242-1254, 2002
38. Nieto A et al: Involvement of Fcgamma receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum 43(4):735-739, 2000
39. Salmon JE et al: Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 97(5):1348-1354, 1996
40. Song YW et al: Abnormal distribution of Fc gamma receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum 41(3):421-426, 1998
41. Siriboonrit U et al: Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61(5):374-383, 2003
42. Chu ZT et al: Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: A common susceptibility gene in the Asian populations. Tissue Antigens 63(1):21-27, 2004
43. Fukuyama H, Nimmerjahn F, Ravetch JV: The inhibitory Fcgamma receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat Immunol 6(1):99-106, 2005
44. Anderson MS et al: Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395-1401, 2002
45. Liston A et al: Aire regulates negative selection of organ-specific T cells. Nat Immunol 4(4):350-354, 2003
46. Ferguson TA: The molecular basis of anterior associated immune deviation (ACAID). Ocul Immunol Inflamm 5(3):213-215, 1997
47. Streilein JW: Ocular immune privilege: The eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 74(2):179-185, 2003
48. Krawczyk C, Penninger JM: Molecular controls of antigen receptor clustering and autoimmunity. Trends Cell Biol 11(5):212-220, 2001
49. Mevorach D: Systemic lupus erythematosus and apoptosis: A question of balance. Clin Rev Allergy Immunol 25(1):49-60, 2003
50. Zhan HG et al: Specific deletion of autoreactive T cells by adenovirus-transfected, Fas ligand-producing antigen-presenting cells. Immunol Res 26(1-3):235-246, 2002
51. Bergman ML et al: CTLA-4-/- mice display T cell-apoptosis resistance resembling that ascribed to autoimmune-prone non-obese diabetic (NOD) mice. J Autoimmun 16(2):105-113, 2001
52. Nishimura H et al: Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141-151, 1999
53. Kremer JM et al: Treatment of rheumatoid arthritis with the selective costimulation modulator
abatacept: Twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial.
Arthritis Rheum 52(8):2263-2271, 2005
54. Hirata S et al: Prevention of experimental autoimmune encephalomyelitis by transfer of embryonic stem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptide along with TRAIL or programmed death-1 ligand. J Immunol 174(4):1888-1897, 2005
55. Gershon RK et al: Suppressor T cells. J Immunol 108(3):586-590, 1972
56. Sakaguchi S et al: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151-1164, 1995
57. Chen Y et al: Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science 265(5176):1237-1240, 1994
58. Jonuleit H et al: Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213-1222, 2000
59. Jonuleit H et al: Infectious tolerance: Human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 196(2):255-260, 2002
60. Beissert S, Schwarz A, Schwarz T: Regulatory T cells. J Invest Dermatol 126(1):15-24, 2006
61. Mills KH: Regulatory T cells: Friend or foe in immunity to infection? Nat Rev Immunol 4(11):841-855, 2004
62. Tang Q et al: In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455-1465, 2004
63. Morgan ME et al: CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum 48(5):1452-1460, 2003
64. Lan RY et al: Regulatory T cells: Development, function and role in autoimmunity. Autoimmun Rev 4(6):351-363, 2005
65. Liu W et al: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701-1711, 2006
66. Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330-336, 2003
67. Khattri R et al: An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4(4):337-342, 2003
68. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057-1061, 2003
69. Curotto de Lafaille MA, Lafaille JJ: Natural and adaptive foxp3+ regulatory T cells: More of the same or a division of labor? Immunity 30(5):626-635, 2009
70. von Boehmer H: Mechanisms of suppression by suppressor T cells. Nat Immunol 6(4):338-344, 2005
71. Sakaguchi S et al: Regulatory T cells: How do they suppress immune responses? Int Immunol 21(10):1105-1111, 2009
72. Paust S et al: Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci U S A 101(28):10398-10403, 2004
73. Taylor PA et al: B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions [corrections]. J Immunol 172(1):34-39, 2004
74. Burchill MA et al: IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178(1):280-290, 2007
75. Yao Z et al: Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109(10):4368-4375, 2007
76. Pandiyan P et al: CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353-1362, 2007
77. Deaglio S et al:
Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression.
J Exp Med 204(6):1257-1265, 2007
78. Grohmann U, Fallarino F, Puccetti P: Tolerance, DCs and
tryptophan: Much ado about IDO.
Trends Immunol 24(5):242-248, 2003
79. Kukreja A et al: Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109(1):131-140, 2002
80. Zavattari P et al: No association between variation of the FOXP3 gene and common type 1 diabetes in the Sardinian population. Diabetes 53(7):1911-1914, 2004
81. Brusko TM et al: Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54(5):1407-1414, 2005
82. Kriegel MA et al: Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 199(9):1285-1291, 2004
83. Kuhn A, Beissert S, Krammer PH: CD4(+)CD25 (+) regulatory T cells in human lupus erythematosus. Arch Dermatol Res 301(1):71-81, 2009
84. Leipe J Beissert S, Krammer PH. CD4 regulatory T cells in rheumatoid arthritis. Arthritis Res Ther 7(3):93, 2005
85. Mottonen M et al: CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 140(2):360-367, 2005
86. Liu MF et al: The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol 62(3):312-317, 2005
87. Ehrenstein MR et al: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200(3):277-285, 2004
88. Boussiotis
VA et al: IL-10-producing T cells suppress immune responses in anergic tuberculosis patients.
J Clin Invest 105(9):1317-1325, 2000
89. Doetze A et al: Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12(5):623-630, 2000
90. MacDonald AJ et al: CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J Infect Dis 185(6):720-727, 2002
91. Marshall NA, Vickers MA, Barker RN: Regulatory T cells secreting IL-10 dominate the immune response to EBV latent membrane protein 1. J Immunol 170(12):6183-6189, 2003
92. Najafian N et al: Regulatory functions of CD8+CD28- T cells in an autoimmune disease model. J Clin Invest 112(7):1037-1048, 2003
93. Hahn BH et al: Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGFbeta-secreting CD8+ T cell suppressors. J Immunol 175(11):7728-7737, 2005
94. Ortega C et al: IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol 86:435-443, 2009
95. Kondo T et al: Cutting edge: Phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J Immunol 182(4):1794-1798, 2009
96. Roark CL et al: gammadelta T cells: An important source of IL-17. Curr Opin Immunol 20(3):353-357, 2008
97. Crispin JC et al: Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181(12):8761-8766, 2008
98. Louten J, Boniface K, de Waal Malefyt R: Development and function of TH17 cells in health and disease. J Allergy Clin Immunol 123(5):1004-1011, 2009
99. McGeachy MJ et al: TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8(12):1390-1397, 2007
100. Dong C: TH17 cells in development: An updated view of their molecular identity and genetic programming. Nat Rev Immunol 8(5):337-348, 2008
101. Bettelli E et al: Induction and effector functions of T(H)17 cells. Nature 453(7198):1051-1057, 2008
102. Chen Z, O'Shea JJ: Th17 cells: A new fate for differentiating helper T cells. Immunol Res 41:87-102, 2008
103. Lee WW et al: Regulating human Th17 cells via differential expression of IL-1 receptor. Blood 115(3):530-540, 2010
104. Wilson NJ et al: Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8(9):950-957, 2007
105. Ivanov, II et al: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121-1133, 2006
106. Brustle A et al: The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8(9):958-966, 2007
107. Manel N, Unutmaz D, Littman DR: The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9(6):641-649, 2008
108. Pene J et al: Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol 180(11):7423-7430, 2008
109. Acosta-Rodriguez EV et al: Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8(6):639-646, 2007
110. Gaffen SL: An overview of IL-17 function and signaling. Cytokine 43(3):402-407, 2008
111. Langrish CL et al: IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233-240, 2005
112. Chen Y et al: Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116(5):1317-1326, 2006
113. Park H et al: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133-1141, 2005
114. Zhang Z, Kyttaris VC, Tsokos GC: The role of IL-23/IL-17 axis in lupus nephritis. J Immunol 183(5):3160-3169, 2009
115. Jacob N et al: Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J Immunol 182(4):2532-2541, 2009
116. Holtta V et al: IL-23/IL-17 immunity as a hallmark of Crohn's disease. Inflamm Bowel Dis 14(9):1175-1184, 2008
117. Zheng Y et al: Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648-651, 2007
118. Wong CK et al: Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 9(8):589-593, 2000
119. Wong CK et al: Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: Implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 127: 385-393, 2008
120. Yang J et al: Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 60(5):1472-1483, 2009
121. Zhao XF et al: Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol Biol Rep 37:81-85, 2010
122. Doreau A et al: Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 10(7):778-785, 2009
123. Kubach J et al: Dendritic cells: Sentinels of immunity and tolerance. Int J Hematol 81(3):197-203, 2005
124. Johansson S et al: NK cells: Elusive players in autoimmunity. Trends Immunol 26(11):613-618, 2005
125. Peng SL et al: Propagation and regulation of systemic autoimmunity by gammadelta T cells. J Immunol 157(12):5689-5698, 1996
126. Yin Z, Craft J: Gamma delta T cells in autoimmunity. Springer Semin Immunopathol 22(3):311-320, 2000
127. Bach JF et al: The role of innate immunity in autoimmunity. J Exp Med 200(12):1527-1531, 2004
128. Rottem M, Mekori YA: Mast cells and autoimmunity. Autoimmun Rev 4(1):21-27, 2005
129. Clark R, Kupper T: Old meets new: The interaction between innate and adaptive immunity. J Invest Dermatol 125(4):629-637, 2005
130. Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987-995, 2004
131. Pasare C, Medzhitov R: Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299(5609):1033-1036, 2003
132. Ronnblom L, Alm GV: An etiopathogenic role for the type I IFN system in SLE. Trends Immunol 22(8):427-431, 2001
133. Baechler
EC, Gregersen PK, Behrens TW: The emerging role of interferon in human systemic lupus erythematosus.
Curr Opin Immunol 16(6):801-807, 2004
134. Crow MK, Kirou KA: Interferon-alpha in systemic lupus erythematosus. Curr Opin Rheumatol 16(5):541-547, 2004
135. Leadbetter EA et al: Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416(6881):603-607, 2002
136. Viglianti GA et al: Activation of autoreactive B cells by CpG dsDNA. Immunity 19(6):837-847, 2003
137. Diebold SS et al: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529-1531, 2004
138. Heil F et al: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526-1529, 2004
139. Olsen NJ: Drug-induced autoimmunity. Best Pract Res Clin Rheumatol 18(5):677-688, 2004
140. Richardson B: DNA methylation and autoimmune disease. Clin Immunol 109(1):72-79, 2003
141. Yung R et al: Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J Clin Invest 97(12):2866-2871, 1996
142. Kaplan MJ et al: DNA methylation in the regulation of T cell LFA-1 expression. Immunol Invest 29(4):411-425, 2000
143. Richardson B et al: Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum 37(9):1363-1372, 1994
144. Kretz-Rommel A, Duncan SR, Rubin RL: Autoimmunity caused by disruption of central T cell tolerance. A murine model of drug-induced lupus. J Clin Invest 99(8):1888-1896, 1997
145. Hooks JJ et al: Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301(1):5-8, 1979
146. Baechler
EC et al: Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.
Proc Natl Acad Sci U S A 100(5):2610-2615, 2003
147. Bennett L et al: Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711-723, 2003
148. Petricoin EF III et al: Antiproliferative action of interferon-alpha requires components of T-cell-receptor signalling. Nature 390(6660):629-632, 1997
149. Litinskiy MB et al: DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3(9):822-829, 2002
150. Dalod M et al: Dendritic cell responses to early murine cytomegalovirus infection: Subset functional specialization and differential regulation by interferon alpha/beta. J Exp Med 197(7):885-898, 2003
151. Blanco P et al: Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294(5546):1540-1543, 2001
152. Radvanyi LG et al: Low levels of interferon-alpha induce CD86 (B7.2) expression and accelerates dendritic cell maturation from human peripheral blood mononuclear cells. Scand J Immunol 50(5):499-509, 1999
153. Reeves JP, Taurog JD, Steinberg AD: Polyclonal B-cell activation of autoantibodies (CBA/N × NZB)F1 mice by polyinosinic polycytidylic acid. Clin Immunol Immunopathol 19(2):170-180, 1981
154. Santiago-Raber ML et al: Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 197(6):777-788, 2003
155. Sarzi-Puttini P et al: Environment and systemic lupus erythematosus: An overview. Autoimmunity 38(7):465-472, 2005
156. Brown JM et al: Silica accelerated systemic autoimmune disease in lupus-prone New Zealand mixed mice. Clin Exp Immunol 131(3):415-421, 2003
157. Mohr C et al: Systemic macrophage stimulation in rats with silicosis: Enhanced release of tumor necrosis factor-alpha from alveolar and peritoneal macrophages. Am J Respir Cell Mol Biol 5(4):395-402, 1991
158. Molina V, Shoenfeld Y: Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 38(3):235-245, 2005
159. James JA et al: An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 100(12):3019-3026, 1997
160. James JA et al: Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum 44(5):1122-1126, 2001
161. Kang I et al: Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol 172(2):1287-1294, 2004
162. Quan TE et al: Epstein-barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum 62:1693-1701, 2010
163. Kang I, Craft J: The Immunology of Systemic Lupus Erythematosus in the Autoimmune Diseases, 4th edition. London, Elsevier, 2005, pp. 357-368
164. Shlomchik MJ, Craft JE, Mamula MJ: From T to B and back again: Positive feedback in systemic autoimmune disease. Nat Rev Immunol 1:147-153, 2001
165. Lefkowith JB, Gilkeson GS: Nephritogenic autoantibodies in lupus: Current concepts and continuing controversies. Arthritis Rheum 39(6):894-903, 1996
166. Clynes R, Dumitru C, Ravetch JV: Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279(5353):1052-1054, 1998
167. Zamvil S et al: T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317(6035):355-358, 1985
168. Peng SL et al: Murine lupus in the absence of alpha beta T cells. J Immunol 156(10):4041-4049a, 1996