1. Roosterman D et al: Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiol Rev 86:1309-1379, 2006
2. Peters EM et al: Neuropeptide control mechanisms in cutaneous biology: Physiological and clinical significance. J Invest Dermatol 126:1937-1947, 2006
3. Scholzen TE, Luger TA: Neutral endopeptidase and angiotensin-converting enzyme—Key enzymes terminating the action of neuroendocrine mediators. Exp Dermatol 13(Suppl.) 4):22-26, 2004
4. Zylka MJ, Rice FL, Anderson DJ: Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17-25, 2005
5. Charkoudian N: Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol
6. Chapman BP, Moynihan J: The brain-skin connection: Role of psychosocial factors and neuropeptides in psoriasis. Expert Rev Clin Immunol 5:623-627, 2009
7. Reich A, Wojcik-Maciejewicz A, Slominski AT: Stress and the skin. G Ital Dermatol Venereol 145:213-219, 2010
8. Theoharides
TC et al: IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin.
Proc Natl Acad Sci U S A 107:4448-4453, 2010
9. Buddenkotte J, Steinhoff M: Pathophysiology and therapy of pruritus in allergic and atopic diseases. Allergy 65:805-821, 2010
10. Ganceviciene R et al: The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermatoendocrinol 1:170-176, 2009
11. Pradhan L et al: Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res 167(2):336-342, 2009
12. Bodo E et al: Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology 151:1633-1642, 2010
13. Ito N et al: Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J Invest Dermatol 130:995-1004, 2010
14. Poeggeler B et al: Thyrotropin powers human mitochondria. FASEB J 24:1525-1531, 2010
15. Sun YG, Chen ZF: A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448:700-703, 2007
16. Sun YG et al: Cellular basis of itch sensation. Science 325:1531-1534, 2009
17. Winkelmann RK: Cutaneous sensory nerves. Semin Dermatol 7:236-268, 1988
18. Munger BL, Ide C: The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51:1-34, 1988
19. Breathnach AS: Electron microscopy of cutaneous nerves and receptors. J Invest Dermatol 69:8-26, 1977
20. Tschachler E et al: Sheet preparations expose the dermal nerve plexus of human skin and render the dermal nerve end organ accessible to extensive analysis. J Invest Dermatol 122:177-182, 2004
21. Kelly EJ et al: Nerve fibre and sensory end organ density in the epidermis and papillary dermis of the human hand. Br J Plast Surg 58:774-779, 2005
22. Yamada N, Kashima Y, Inoue T: Scanning electron microscopy of the basal surface of the epidermis of human digits. Acta Anat (Basel) 155:242-248, 1996
23. Alvarez FJ, Fyffe RE: Nociceptors for the 21st century. Curr Rev Pain 4:451-458, 2000
24. Lawson SN: Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres. Exp Physiol 87:239-244, 2002
25. Schmidt R et al: Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15:333-341, 1995
26. Basbaum AI et al: Cellular and molecular mechanisms of pain. Cell 139:267-284, 2009
27. Zimmermann K et al: Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:855-858, 2007
28. Caterina MJ et al: The
capsaicin receptor: A heat-activated ion channel in the pain pathway [see comments].
Nature 389:816-824, 1997
29. Slominski A, Wortsman J: Neuroendocrinology of the skin. Endocr Rev 21:457-487, 2000
30. Slominski A et al:
Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress.
Physiol Rev 80:979-1020, 2000
31. Brain SD, Moore PK, eds: Pain and Neurogenic Inflammation. Basel, Birkhäuser Verlag, 1999
32. Vetrugno R et al: Sympathetic skin response: Basic mechanisms and clinical applications. Clin Auton Res 13:256-270, 2003
33. Tainio H, Vaalasti A, Rechardt L: The distribution of substance P-, CGRP-, galanin- and ANP-like immunoreactive nerves in human sweat glands. Histochem J 19:375-380, 1987
34. Bjorklund H et al: Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study. Cell Tissue Res 243:51-57, 1986
35. Polak JM, Bloom SR: Regulatory peptides–The distribution of two newly discovered peptides: PHI and NPY. Peptides 5(Suppl 1.):79-89, 1984
36. Rao MS, Landis SC: Cell interactions that determine sympathetic neuron transmitter phenotype and the neurokines that mediate them. J Neurobiol 24:215-232, 1993
37. Habecker BA et al: Target regulation of
VIP expression in sympathetic neurons.
Ann N Y Acad Sci 814:198-208, 1997
38. Izumi H: Nervous control of blood flow in the orofacial region. Pharmacol Ther 81:141-161, 1999
39. Kaji A et al: Parasympathetic innervation of cutaneous blood vessels by vasoactive intestinal polypeptide-immunoreactive and acetylcholinesterase-positive nerves: Histochemical and experimental study on rat lower lip. Neuroscience 25:353-362, 1988
40. Advenier C, Devillier P: Neurokinins and the skin. Allerg Immunol (Paris) 25:280-282, 285, 1993
41. Brain SD, Williams TJ: Inflammatory oedema induced by synergism between
calcitonin gene- related peptide (CGRP) and mediators of increased vascular permeability.
Br J Pharmacol 86:855-860, 1985
42. Wallengren J et al: Innervation of the skin of the forearm in diabetic patients: Relation to nerve function. Acta Derm Venereol 75:37-42, 1995
43. Hamberger B, Norberg KA: Histochemical demonstration of catecholamines in fresh frozen sections. J Histochem Cytochem 12:48-49, 1964
44. Bennett LA et al: Evidence for a role for vasoactive intestinal peptide in active vasodilatation in the cutaneous vasculature of humans. J Physiol 552:223-232, 2003
45. Burnstock G: Purinergic cotransmission. Brain Res Bull 50:355-357, 1999
46. Stephens DP et al: Neuropeptide Y antagonism reduces reflex cutaneous vasoconstriction in humans. Am J Physiol Heart Circ Physiol 287:H1404-H1409, 2004
47. Groetzner P, Weidner C: The human vasodilator axon reflex—An exclusively peripheral phenomenon? Pain 149:71-75
48. Steinhoff M et al: Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol 126:1705-1718, 2006
49. Bohm M et al: Melanocortin receptor ligands: New horizons for skin biology and clinical dermatology. J Invest Dermatol 126:1966-1975, 2006
50. Reilly DM et al: The epidermal nerve fibre network: Characterization of nerve fibres in human skin by confocal microscopy and assessment of racial variations. Br J Dermatol 137:163-170, 1997
51. Misery L: Skin, immunity and the nervous system. Br J Dermatol 137:843-850, 1997
52. Steinhoff M et al: Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol 139:1479-1488, 2003
53. Namazi MR: Paradoxical exacerbation of psoriasis in AIDS: Proposed explanations including the potential roles of substance P and gram-negative bacteria. Autoimmunity 37:67-71, 2004
54. Nakano Y: Stress-induced modulation of skin immune function: Two types of antigen-presenting cells in the epidermis are differentially regulated by chronic stress. Br J Dermatol 151:50-64, 2004
55. O'Connor TM et al: The role of substance P in inflammatory disease. J Cell Physiol 201:167-180, 2004
56. Orsal AS et al: The
progesterone derivative dydrogesterone down-regulates neurokinin 1 receptor expression on lymphocytes, induces a Th2 skew and exerts hypoalgesic effects in mice.
J Mol Med 84:159-167, 2006
57. Lighvani S et al: Substance P regulates natural killer cell interferon-gamma production and resistance to Pseudomonas aeruginosa infection. Eur J Immunol 35:1567-1575, 2005
58. Brogden KA et al: The nervous system and innate immunity: The neuropeptide connection. Nat Immunol 6:558-564, 2005
59. Ho WZ, Douglas SD: Substance P and neurokinin-1 receptor modulation of HIV. J Neuroimmunol 157:48-55, 2004
60. Delgado AV, McManus AT, Chambers JP: Exogenous administration of Substance P enhances wound healing in a novel skin-injury model. Exp Biol Med (Maywood) 230:271-280, 2005
61. Peters EM et al: Stress exposure modulates peptidergic innervation and degranulates mast cells in murine skin. Brain Behav Immun 19:252-262, 2005
62. Svensson A et al: Neurokinin 1 receptor signaling affects the local innate immune defense against genital herpes virus infection. J Immunol 175:6802-6811, 2005
63. Manske JM, Hanson SE: Substance-P-mediated immunomodulation of tumor growth in a murine model. Neuroimmunomodulation 12:201-210, 2005
64. Marriott I: The role of tachykinins in central nervous system inflammatory responses. Front Biosci 9:2153-2165, 2004
65. Paus R et al: Frontiers in pruritus research: Scratching the brain for more effective itch therapy. J Clin Invest 116:1174-1186, 2006
66. van der Kleij HP et al: The tachykinin NK1 receptor is crucial for the development of non-atopic airway inflammation and hyperresponsiveness. Eur J Pharmacol 476:249-255, 2003
67. Lai X et al: Effect of substance P released from peripheral nerve ending on endogenous expression of epidermal growth factor and its receptor in wound healing. Chin J Traumatol 5:176-179, 2002
68. Burbach GJ et al: The neurosensory tachykinins substance P and neurokinin A directly induce keratinocyte nerve growth factor. J Invest Dermatol 117:1075-1082, 2001
69. Viac J et al: Substance P and keratinocyte activation markers: An in vitro approach. Arch Dermatol Res 288:85-90, 1996
70. Kahler CM et al: Stimulation of the chemotactic migration of human fibroblasts by substance P. Eur J Pharmacol 249:281-286, 1993
71. Palframan RT et al: The effect of a tachykinin NK1 receptor antagonist, SR140333, on oedema formation induced in rat skin by venom from the Phoneutria nigriventer spider. Br J Pharmacol 118:295-298, 1996
72. Scholzen TE et al: Cutaneous allergic contact dermatitis responses are diminished in mice deficient in neurokinin 1 receptors and augmented by neurokinin 2 receptor blockage. Faseb J 18:1007-1009, 2004
73. Stander S et al: Targeting the neurokinin receptor 1 with
aprepitant: A novel antipruritic strategy.
PLoS One 5:e10968, 2010
74. Vincenzi B et al:
Aprepitant against pruritus in patients with solid tumours.
Support Care Cancer75. Duval A, Dubertret L:
Aprepitant as an antipruritic agent?
N Engl J Med 361:1415-1416, 2009
76. Schulze E et al: Immunohistochemical detection of human skin nerve fibers. Acta Histochem 99:301-309, 1997
77. Hartschuh W, Weihe E, Reinecke M: Peptidergic (neurotensin,
VIP, substance P) nerve fibres in the skin. Immunohistochemical evidence of an involvement of neuropeptides in nociception, pruritus and inflammation.
Br J Dermatol 109(Suppl. 25):14-17, 1983
78. Naukkarinen A et al: Immunohistochemical analysis of sensory nerves and neuropeptides, and their contacts with mast cells in developing and mature psoriatic lesions. Arch Dermatol Res 285:341-346, 1993
79. Harvima IT et al: Association of cutaneous mast cells and sensory nerves with psychic stress in psoriasis. Psychother Psychosom 60:168-176, 1993
80. Groneberg DA et al: Down-regulation of vasoactive intestinal polypeptide receptor expression in atopic dermatitis. J Allergy Clin Immunol 111:1099-1105, 2003
81. Eedy DJ et al: Vasoactive intestinal peptide (
VIP) and peptide histidine methionine (PHM) in human eccrine sweat glands: Demonstration of innervation, specific binding sites and presence in secretions.
Br J Dermatol 123:65-76, 1990
82. Sato K, Sato F: Effect of
VIP on sweat secretion and cAMP accumulation in isolated simian eccrine glands.
Am J Physiol 253:R935-R941, 1987
83. Eedy DJ et al: The regional distribution of neuropeptides in human skin as assessed by radioimmunoassay and high-performance liquid chromatography. Clin Exp Dermatol 19:463-472, 1994
84. Kellogg DL et al:
VIP/PACAP receptor mediation of cutaneous active vasodilation during heat stress in humans.
J Appl Physiol 109:95-100, 2010
85. Schytz HW et al: Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and
VIP.
J Headache Pain 11:309—316, 2010
86. Anand P et al: A VIP-containing system concentrated in the lumbosacral region of human spinal cord. Nature 305:143-145, 1983
87. Warren JB et al: Opposing roles of cyclic AMP in the vascular control of edema formation. Faseb J 7:1394-1400, 1993
88. Kakurai M et al: Vasoactive intestinal peptide and inflammatory cytokines enhance vascular endothelial growth factor production from epidermal keratinocytes. Br J Dermatol 161:1232-1238, 2009
89. Veljkovic V, Metlas R: Application of
VIP/NTM-reactive natural antibodies in therapy of HIV disease.
Int Rev Immunol 23:437-445, 2004
90. Delgado M et al:
VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4(+) T cells.
J Leukoc Biol 75:1122-1130, 2004
91. Gonzalez-Rey E, Delgado M: Role of vasoactive intestinal peptide in inflammation and autoimmunity. Curr Opin Investig Drugs 6:1116-1123, 2005
92. Delgado M et al: Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J Leukoc Biol 78:1327-1338, 2005
93. Delgado M et al: Vasoactive intestinal peptide (
VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6.
J Immunol 162:1200-1205, 1999
94. Delgado M et al: Vasoactive intestinal peptide and pituitary adenylate cyclase- activating polypeptide inhibit endotoxin-induced TNF-alpha production by macrophages: In vitro and in vivo studies. J Immunol 162:2358-2367, 1999
95. Gutierrez-Canas I et al:
VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts.
Rheumatology 45:527-532, 2006
96. Dun NJ et al: Pituitary adenylate cyclase activating polypeptide immunoreactivity in the rat spinal cord and medulla: Implication of sensory and autonomic functions. Neuroscience 73:677-686, 1996
97. Moller K et al: Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: Immunocytochemical and immunochemical evidence. Neuroscience 57:725-732, 1993
98. Armstrong BD et al: Restoration of axotomy-induced PACAP gene induction in SCID mice with CD4+ T-lymphocytes. Neuroreport 15:2647-2650, 2004
99. Steinhoff M et al: Identification of pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP type 1 receptor in human skin: Expression of PACAP-38 is increased in patients with psoriasis. Regul Pept 80:49-55, 1999
100. Odum L et al: Pituitary adenylate cyclase activating polypeptide (PACAP) is localized in human dermal neurons and causes histamine release from skin mast cells. Inflamm Res 47:488-492, 1998
101. Pincelli C et al: Substance P is diminished and vasoactive intestinal peptide is augmented in psoriatic lesions and these peptides exert disparate effects on the proliferation of cultured human keratinocytes. J Invest Dermatol 98:421-427, 1992
102. Zhang YZ et al: Pituitary adenylate cyclase activating peptide produces a marked and long-lasting depression of a C-fibre-evoked flexion reflex. Neuroscience 57:733-737, 1993
103. Jongsma H et al: Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport 12:2215-2219, 2001
104. Cardell LO et al: PACAP-induced plasma extravasation in rat skin. Regul Pept 71:67-71, 1997
105. Schmidt-Choudhury A et al: Mast cells contribute to PACAP-induced dermal oedema in mice. Regul Pept 82:65-69, 1999
106. Fizanne L et al: Evidence for the involvement of VPAC1 and VPAC2 receptors in pressure-induced vasodilatation in rodents. J Physiol 554:519-528, 2004
107. Seeliger S et al: Pituitary Adenylate Cyclase Activating Polypeptide: An Important Vascular Regulator in Human Skin in vivo. Am J Pathol 177:2563-2575, 2010
108. Gibbins IL, Wattchow D, Coventry B: Two immunohistochemically identified populations of
calcitonin gene- related peptide (CGRP)-immunoreactive axons in human skin.
Brain Res 414:143-148, 1987
109. Brain SD, Grant AD: Vascular actions of
calcitonin gene-related peptide and adrenomedullin.
Physiol Rev 84:903-934, 2004
110. Botchkarev
VA et al: A simple immunofluorescence technique for simultaneous visualization of mast cells and nerve fibers reveals selectivity and hair cycle–dependent changes in mast cell–nerve fiber contacts in murine skin.
Arch Dermatol Res 289:292-302, 1997
111. Fantini F et al: Cutaneous innervation in chronic renal failure patients. An immunohistochemical study. Acta Derm Venereol 72:102-105, 1992
112. Hara M et al: Innervation of melanocytes in human skin. J Exp Med 184:1385-1395, 1996
113. Asahina A et al: Specific induction of cAMP in Langerhans cells by
calcitonin gene- related peptide: Relevance to functional effects.
Proc Natl Acad Sci U S A 92:8323-8327, 1995
114. Hosoi J et al: Regulation of Langerhans cell function by nerves containing
calcitonin gene-related peptide.
Nature 363:159-163, 1993
115. Averbeck B et al: Inflammatory mediators do not stimulate CGRP release if prostaglandin synthesis is blocked by S(+)-flurbiprofen in isolated rat skin. Inflamm Res 52:519-523, 2003
116. Kresse A, Jacobowitz DM, Skofitsch G: Distribution of
calcitonin gene-related peptide in the central nervous system of the rat by immunocytochemistry and in situ hybridization histochemistry.
Ann N Y Acad Sci 657:455-457, 1992
117. Wallengren J, Ekman R, Sundler F: Occurrence and distribution of neuropeptides in the human skin. An immunocytochemical and immunochemical study on normal skin and blister fluid from inflamed skin. Acta Derm Venereol 67:185-192, 1987
118. Tam C, Brain SD: The assessment of vasoactive properties of CGRP and adrenomedullin in the microvasculature: A study using in vivo and in vitro assays in the mouse. J Mol Neurosci 22:117-124, 2004
119. Kiss M et al: Effects of the neuropeptides substance P,
calcitonin gene-related peptide and alpha-melanocyte-stimulating hormone on the IL-8/IL-8 receptor system in a cultured human keratinocyte cell line and dermal fibroblasts.
Inflammation 23:557-567, 1999
120. Wimalawansa SJ:
Calcitonin gene-related peptide and its receptors: Molecular genetics, physiology, pathophysiology, and therapeutic potentials.
Endocr Rev 17:533-585, 1996
121. Ichinose M, Sawada M: Enhancement of phagocytosis by
calcitonin gene-related peptide (CGRP) in cultured mouse peritoneal macrophages.
Peptides 17:1405-1414, 1996
122. Sung CP et al: CGRP stimulates the adhesion of leukocytes to vascular endothelial cells. Peptides 13:429-434, 1992
123. Scholzen TE et al:
Calcitonin gene-related peptide (CGRP) activation of human dermal microvascular endothelial cell (HDMEC) transcription factors NF-kappa B and CREB.
J. Invest. Dermatol. 115:534, 2000
124. Jansen-Olesen I, Mortensen A, Edvinsson L:
Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase [see comments].
Cephalalgia 16:310-316, 1996
125. Brain SD et al:
Calcitonin gene-related peptide is a potent vasodilator.
Nature 313:54-56, 1985
126. Brain SD et al: Potent vasodilator activity of
calcitonin gene-related peptide in human skin.
J Invest Dermatol 87:533-536, 1986
127. Brain SD, Williams TJ: Interactions between the tachykinins and
calcitonin gene-related peptide lead to the modulation of oedema formation and blood flow in rat skin.
Br J Pharmacol 97:77-82, 1989
128. Ozaka T et al: Weibel-Palade bodies as a storage site of
calcitonin gene-related peptide and endothelin-1 in blood vessels of the rat carotid body.
Anat Rec 247:388-394, 1997
129. Gillardon F, Morano I, Zimmermann M: Ultraviolet irradiation of the skin attenuates
calcitonin gene-related peptide mRNA expression in rat dorsal root ganglion cells.
Neurosci Lett 124:144-147, 1991
130. Toyoda M et al:
Calcitonin gene-related peptide upregulates melanogenesis and enhances melanocyte dendricity via induction of keratinocyte-derived melanotrophic factors.
J Investig Dermatol Symp Proc 4:116-125, 1999
131. Fischer MJ:
Calcitonin gene-related peptide receptor antagonists for migraine.
Expert Opin Investig Drugs 19:815-823
132. Villalon CM, Olesen J: The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther 124:309-323, 2009
133. Liebow C, Lee MT, Schally A: Antitumor effects of somatostatin mediated by the stimulation of tyrosine phosphatase. Metabolism 39:163-166, 1990
134. Buscail L et al: Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: Mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc Natl Acad Sci U S A 91:2315-2319, 1994
135. Payan DG, Hess CA, Goetzl EJ: Inhibition by somatostatin of the proliferation of T-lymphocytes and Molt-4 lymphoblasts. Cell Immunol 84:433-438, 1984
136. Leszczynski D et al: Angiopeptin, the octapeptide analogue of somatostatin, decreases rat heart endothelial cell adhesiveness for mononuclear cells. Regul Pept 43:131-140, 1993
137. Goetzl EJ et al: Endogenous somatostatin-like peptides of rat basophilic leukemia cells. J Immunol 135:2707-2712, 1985
138. Church MK, el-Lati S, Caulfield JP: Neuropeptide-induced secretion from human skin mast cells. Int Arch Allergy Appl Immunol 94:310-318, 1991
139. Pincelli C et al: Neuropeptides in skin from patients with atopic dermatitis: An immunohistochemical study. Br J Dermatol 122:745-750, 1990
140. Johansson O: Morphological characterization of the somatostatin-immunoreactive dendritic skin cells in urticaria pigmentosa patients by computerized image analysis. Scand J Immunol 21:431-439, 1985
141. Johansson O, Nordlind K: Immunohistochemical localization of somatostatin-like immunoreactivity in skin lesions from patients with urticaria pigmentosa. Virchows Arch B Cell Pathol Incl Mol Pathol 46:155-164, 1984
142. ten Bokum AM et al: Somatostatin receptor subtype expression in cells of the rat immune system during adjuvant arthritis. J Endocrinol 161:167-175, 1999
143. ten Bokum AM et al: Immunohistochemical localization of somatostatin receptor sst2A in human rheumatoid synovium. J Rheumatol 26:532-535, 1999
144. Descamps V et al: Global improvement of systemic scleroderma under long-term administration of
octreotide.
Eur J Dermatol 9:446-448, 1999
145. Luger TA et al: Cutaneous immunomodulation and coordination of skin stress responses by alpha-melanocyte-stimulating hormone. Ann N Y Acad Sci 840:381-394, 1998
146. Ito N et al: Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal (HPA) axis and synthesize cortisol. Faseb J 19(10):1332-1334, 2005
147. Kauser S et al: Regulation of human epidermal melanocyte biology by beta-endorphin. J Invest Dermatol 120:1073-1080, 2003
148. Khodorova A et al: Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med 9:1055-1061, 2003
149. Ibrahim MM et al: CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci U S A 102:3093-3098, 2005
150. Zouboulis CC, Bohm M: Neuroendocrine regulation of sebocytes—A pathogenetic link between stress and acne. Exp Dermatol 13(Suppl. 4):31-35, 2004
151. Bigliardi PL et al: Specific stimulation of migration of human keratinocytes by mu-opiate receptor agonists. J Recept Signal Transduct Res 22:191-199, 2002
152. Bigliardi-Qi M et al: Mu-opiate receptor and Beta-endorphin expression in nerve endings and keratinocytes in human skin. Dermatology 209:183-189, 2004
153. Nissen JB et al: Decrease in enkephalin levels in psoriatic lesions after calcipotriol and
mometasone furoate treatment.
Dermatology 198:11-17, 1999
154. Earl JR et al: Effect of mu, delta and kappa opioid receptor agonists on a reactive
oxygen species mediated model of skin inflammation.
Skin Pharmacol 9:250-258, 1996
155. Nissen JB et al: Effect of intradermal injection of methionine-enkephalin on human skin. Acta Derm Venereol 79:23-26, 1999
156. Morris JL: Distribution and peptide content of sympathetic axons innervating different regions of the cutaneous venous bed in the pinna of the guinea pig ear. J Vasc Res 32:378-386, 1995
157. Stein C et al: Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci U S A 87:5935-5939, 1990
158. Malekzad F et al: Efficacy of oral
naltrexone on pruritus in atopic eczema: A double-blind, placebo-controlled study.
J Eur Acad Dermatol Venereol 23:948-950, 2009
159. Bigliardi PL et al: Treatment of pruritus with topically applied opiate receptor antagonist. J Am Acad Dermatol 56:979-988, 2007
160. Gantz I, Fong TM: The melanocortin system. Am J Physiol Endocrinol Metab 284:E468-E474, 2003
161. Mountjoy KG et al: The cloning of a family of genes that encode the melanocortin receptors. Science 257:1248-1251, 1992
162. Hiramoto K et al: Increased alpha-melanocyte-stimulating hormone (alpha-MSH) levels and melanocortin receptors expression associated with pigmentation in an NC/Nga mouse model of atopic dermatitis. Exp Dermatol 19:132-136, 2009
163. Krude H, Gruters A: Implications of proopiomelanocortin (POMC) mutations in humans: The POMC deficiency syndrome. Trends Endocrinol Metab 11:15-22, 2000
164. Chakraborty AK et al: UV light and MSH receptors. Ann N Y Acad Sci 885:100-116, 1999
165. Burchill SA, Thody AJ: Melanocyte-stimulating hormone and the regulation of tyrosinase activity in hair follicular melanocytes of the mouse. J Endocrinol 111:225-232, 1986
166. Wilms K: Benign (reactive) lymphoproliferation or malignant lymphoma? Z Gesamte Inn Med 46:53-58, 1991
167. Bohm M et al: Evidence for expression of melanocortin-1 receptor in human sebocytes in vitro and in situ. J Invest Dermatol 118:533-539, 2002
168. Brzoska T et al: Alpha-melanocyte-stimulating hormone and related tripeptides: Biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 29:581-602, 2008
169. Schiller M et al: Solar-simulated ultraviolet radiation-induced upregulation of the melanocortin-1 receptor, proopiomelanocortin, and alpha-melanocyte-stimulating hormone in human epidermis in vivo. J Invest Dermatol 122:468-476, 2004
170. Luger TA et al: New insights into the functions of alpha-MSH and related peptides in the immune system. Ann N Y Acad Sci 994:133-140, 2003
171. Loser K et al: The neuropeptide alpha-melanocyte-stimulating hormone is critically involved in the development of cytotoxic CD8+ T cells in mice and humans. PLoS One 5:e8958, 2010
172. Kokot A et al: alpha-melanocyte-stimulating hormone suppresses bleomycin-induced
collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma?
Arthritis Rheum 60:592-603, 2009
173. Bohm M et al:
Collagen metabolism is a novel target of the neuropeptide alpha-melanocyte-stimulating hormone.
J Biol Chem 279:6959-6966, 2004
174. Cutuli M et al: Antimicrobial effects of alpha-MSH peptides. J Leukoc Biol 67:233-239, 2000
175. Bohm M et al: alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem 280:5795-5802, 2005
176. Hill RP et al: Alpha-melanocyte stimulating hormone cytoprotective biology in human dermal fibroblast cells. Peptides 26:1150-1158, 2005
177. Abdel-Malek ZA et al: alpha-MSH tripeptide analogs activate the melanocortin 1 receptor and reduce UV-induced DNA damage in human melanocytes. Pigment Cell Melanoma Res 22:635-644, 2009
178. Getting SJ et al: Melanocortin peptide therapy for the treatment of arthritic pathologies. ScientificWorldJournal 9:1394-1414, 2009
179. Slominski A et al: Ultraviolet B stimulates production of
corticotropin releasing factor (CRF) by human melanocytes.
FEBS Lett 399:175-176, 1996
180. Coste SC et al: IL-1alpha and TNFalpha down-regulate CRH receptor-2 mRNA expression in the mouse heart. Endocrinology 142:3537-3545, 2001
181. Papadopoulou N et al: Corticotropin-releasing hormone receptor-1 and histidine decarboxylase expression in chronic urticaria. J Invest Dermatol 125:952-955, 2005
182. Zbytek B, Pfeffer LM, Slominski AT: Corticotropin-releasing hormone stimulates NF-kappaB in human epidermal keratinocytes. J Endocrinol 181:R1-R7, 2004
183. Slominski A et al: Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology 145:941-950, 2004
184. Donelan J et al: Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc Natl Acad Sci U S A 103:7759-7764, 2006
185. Lolis MS, Bowe WP, Shalita AR: Acne and systemic disease. Med Clin North Am 93:1161-1181, 2009
186. Ziegler CG et al:
Corticotropin releasing hormone and its function in the skin.
Horm Metab Res 39:106-109, 2007
187. Johnson GD, Stevenson T, Ahn K: Hydrolysis of peptide hormones by endothelin-converting enzyme-1. A comparison with neprilysin. J Biol Chem 274:4053-4058, 1999
188. Fahnoe DC et al: Inhibitor potencies and substrate preference for endothelin-converting enzyme-1 are dramatically affected by pH. J Cardiovasc Pharmacol 36:S22-S25, 2000
189. Zhu L et al: The role of dipeptidyl peptidase IV in the cleavage of
glucagon family peptides: In vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38).
J Biol Chem 278:22418-22423, 2003
190. Caldwell PR et al: Angiotensin-converting enzyme: Vascular endothelial localization. Science 191:1050-1051, 1976
191. Scholzen TE et al: Neutral Endopeptidase Terminates Substance P-Induced Inflammation in Allergic Contact Dermatitis. J Immunol 166:1285-1291, 2001
192. Johnson AR et al: Neutral endopeptidase in serum samples from patients with adult respiratory distress syndrome. Comparison with angiotensin-converting enzyme. Am Rev Respir Dis 132:1262-1267, 1985
193. Muns G, Vishwanatha JK, Rubinstein I: Effects of smokeless tobacco on chemically transformed hamster oral keratinocytes: Role of angiotensin I-converting enzyme. Carcinogenesis 15:1325-1327, 1994
194. Olerud JE et al: Neutral endopeptidase expression and distribution in human skin and wounds. J Invest Dermatol 112:873-881, 1999
195. Lu B et al: The control of microvascular permeability and blood pressure by neutral endopeptidase. Nat Med 3:904-907, 1997
196. Steinhoff M et al: Role of neutral endopeptidase (NEP) and substance P in cutaneous inflammation: Increased plasma extravasation in NEP-deficient mice. Arch Dermatol Res 197:27, 1999. (Abstract)
197. Okamoto A et al: Interactions between neutral endopeptidase (
EC 3.4.24.11) and the substance P (NK1) receptor expressed in mammalian cells.
Biochem J 299:683-693, 1994
198. Muller L et al: Heterodimerization of endothelin-converting enzyme-1 isoforms regulates the subcellular distribution of this metalloprotease. J Biol Chem 278:545-555, 2003
199. Muller L et al: Expression of the endothelin-converting enzyme-1 isoforms in endothelial cells. J Cardiovasc Pharmacol 36:S15-S18, 2000
200. Kondepudi A, Johnson A: Cytokines increase neutral endopeptidase activity in lung fibroblasts. Am J Respir Cell Mol Biol 8:43-49, 1993
201. Graf K et al: Activation of adenylate cyclase and phosphodiesterase inhibition enhance neutral endopeptidase activity in human endothelial cells. Peptides 16:1273-1278, 1995
202. Borson DB: Roles of neutral endopeptidase in airways. Am J Physiol 260:L212-225, 1991
203. Borson DB, Gruenert DC: Glucocorticoids induce neutral endopeptidase in transformed human tracheal epithelial cells. Am J Physiol 260:L83-89, 1991
204. Steckelings UM et al: Human skin: Source of and target organ for angiotensin II. Exp Dermatol 13:148-154, 2004
205. Roosterman D et al: Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling. Proc Natl Acad Sci U S A 104:11838-11843, 2007
206. Cattaruzza F et al: Endothelin-converting enzyme 1 promotes re-sensitization of neurokinin 1 receptor-dependent neurogenic inflammation. Br J Pharmacol 156:730-739, 2009
207. Cottrell GS et al: Endosomal endothelin-converting enzyme-1: A regulator of beta-arrestin-dependent ERK signaling. J Biol Chem 284:22411-22425, 2009
208. Padilla BE et al: Endothelin-converting enzyme-1 regulates endosomal sorting of
calcitonin receptor-like receptor and beta-arrestins.
J Cell Biol 179:981-997, 2007
209. Roosterman D et al: Endothelin-converting enzyme-1 degrades internalized somatostatin-14. Endocrinology 149:2200-2207, 2008
210. Jutel M, Akdis M, Akdis CA: Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 39:1786-1800, 2009
211. Dawicki W et al: Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J Immunol 184:2116-2123, 2010
212. Cowden JM et al: The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J Invest Dermatol 130:1023-1033, 2010
213. Clapham DE: TRP channels as cellular sensors. Nature 426:517-524, 2003
214. Chuang HH et al: Bradykinin and nerve growth factor release the
capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.
Nature 411:957-962, 2001
215. Hwang SW et al: Direct activation of
capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances.
Proc Natl Acad Sci U S A 97:6155-6160, 2000
216. Mohapatra DP, Nau C: Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278:50080-50090, 2003
217. Shin J et al: Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci U S A 99:10150-10155, 2002
218. Di Marzo V, Blumberg PM, Szallasi A: Endovanilloid signaling in pain. Curr Opin Neurobiol 12:372-379, 2002
219. Caterina MJ, Julius D: The vanilloid receptor: A molecular gateway to the pain pathway. Annu Rev Neurosci 24:487-517, 2001
220. Stander S, Luger T, Metze D: Treatment of prurigo nodularis with topical
capsaicin.
J Am Acad Dermatol 44:471-478, 2001
221. Twycross R et al: Itch: Scratching more than the surface. Qjm 96:7-26, 2003
222. Yosipovitch G, Greaves MW, Schmelz M: Itch. Lancet 361:690-694, 2003
223. Stander S, Steinhoff M: Pathophysiology of pruritus in atopic dermatitis: An overview. Exp Dermatol 11:12-24, 2002
224. Senba E et al: The immunosuppressant FK506 activates capsaicin- and bradykinin-sensitive DRG neurons and cutaneous C-fibers. Neurosci Res 50:257-262, 2004
226. Nagy I et al: The role of the vanilloid (
capsaicin) receptor (TRPV1) in physiology and pathology.
Eur J Pharmacol 500:351-369, 2004
227. Szallasi A: Small molecule vanilloid TRPV1 receptor antagonists approaching drug status: Can they live up to the expectations? Naunyn Schmiedebergs Arch Pharmacol 373:273-286, 2006
228. Szallasi A, Blumberg PM: Vanilloid (
Capsaicin) receptors and mechanisms.
Pharmacol Rev 51:159-212, 1999
229. Bodo E et al: Vanilloid receptor-1 (VR1) is widely expressed on various epithelial and mesenchymal cell types of human skin. J Invest Dermatol 123:410-413, 2004
230. Denda M et al: Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 285:1250-1252, 2001
231. Inoue K et al: Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291:124-129, 2002
232. Bodo E et al: A hot new twist to hair biology: Involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol 166:985-998, 2005
233. Southall MD et al: Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217-222, 2003
234. Pecze L et al: Human keratinocytes are vanilloid resistant. PLoS ONE 3:e3419, 2008
235. Nilius B et al: Transient receptor potential cation channels in disease. Physiol Rev 87:165-217, 2007
236. Yoshioka T et al: Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 129:714-722, 2009
237. Atoyan R, Shander D, Botchkareva NV: Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129:2312-2315, 2009
238. Pozsgai G et al: Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovasc Res 87:760-768, 2010
239. Axelsson HE et al: Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience 162:1322-1332, 2009
240. Rhee MH et al: Cannabinol derivatives: Binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem 40:3228-3233, 1997
241. Mackie K: Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101-122, 2006
242. Coutaux A et al: Hyperalgesia and allodynia: Peripheral mechanisms. Joint Bone Spine 72:359-371, 2005
243. Howlett
AC et al: International Union of Pharmacology. XXVII. Classification of cannabinoid receptors.
Pharmacol Rev 54:161-202, 2002
244. Sugiura T et al: Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 66:173-192, 2002
245. Devane WA et al: Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946-1949, 1992
246. Klein TW, Newton C, Friedman H: Cannabinoid receptors and immunity. Immunol Today 19:373-381, 1998
247. Berdyshev EV: Cannabinoid receptors and the regulation of immune response. Chem Phys Lipids 108:169-190, 2000
248. Klein TW et al: The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 225:1-8, 2000
249. Newton CA, Klein TW, Friedman H: Secondary immunity to Legionella pneumophila and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection. Infect Immun 62:4015-4020, 1994
250. Zhu LX et al: Delta-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J Immunol 165:373-380, 2000
251. Munro S, Thomas KL, Abu-Shaar M: Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61-65, 1993
252. McAllister SD, Glass M: CB(1) and CB(2) receptor-mediated signalling: A focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:161-171, 2002
253. Klein TW et al: The cannabinoid system and immune modulation. J Leukoc Biol 74:486-496, 2003
254. Oka S et al: 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils. J Leukoc Biol 76:1002-1009, 2004
255. Rayman N et al: Distinct expression profiles of the peripheral cannabinoid receptor in lymphoid tissues depending on receptor activation status. J Immunol 172:2111-2117, 2004
256. Maestroni GJ: The endogenous cannabinoid 2-arachidonoyl glycerol as in vivo chemoattractant for dendritic cells and adjuvant for Th1 response to a soluble protein. Faseb J 18:1914-1916, 2004
257. Jonsson KO, Persson E, Fowler CJ: The cannabinoid CB2 receptor selective agonist JWH133 reduces mast cell oedema in response to compound 48/80 in vivo but not the release of beta-hexosaminidase from skin slices in vitro. Life Sci 78:598-606, 2006
258. Stander S et al: Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatol Sci 38:177-188, 2005
259. Maccarrone M et al: The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem 278:33896-33903, 2003
260. De Petrocellis L et al: Actions of two naturally occurring saturated N-acyldopamines on transient receptor potential vanilloid 1 (TRPV1) channels. Br J Pharmacol 143:251-256, 2004
261. Dvorak M et al: Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin. Inflamm Res 52:238-245, 2003
262. Richardson JD, Kilo S, Hargreaves KM: Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75:111-119, 1998
263. Rukwied R et al: Cannabinoid agonists attenuate capsaicin-induced responses in human skin. Pain 102:283-288, 2003
264. Biro T et al: The endocannabinoid system of the skin in health and disease: Novel perspectives and therapeutic opportunities. Trends Pharmacol Sci 30:411-420, 2009
265. Kupczyk P, Reich A, Szepietowski JC: Cannabinoid system in the skin—A possible target for future therapies in dermatology. Exp Dermatol 18:669-679, 2009
266. Burrell HE et al: Potentiation of ATP- and bradykinin-induced [Ca2+]c responses by PTHrP peptides in the HaCaT cell line. J Invest Dermatol 128:1107-1115, 2008
267. Inoue K, Hosoi J, Denda M: Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Invest Dermatol 127:362-371, 2007
268. Ohara H et al: Gene expression profiling defines the role of ATP-exposed keratinocytes in skin inflammation. J Dermatol Sci 58:143-151
269. Zhang N, Oppenheim JJ: Crosstalk between chemokines and neuronal receptors bridges immune and nervous systems. J Leukoc Biol 78:1210-1214, 2005
270. White FA et al: Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci U S A 102:14092-14097, 2005
271. Lindia JA et al: Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain 6:434-438, 2005
272. Feferman T et al: Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol 174:5324-5331, 2005
273. Verge GM et al: Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 20:1150-1160, 2004
274. Kotani N et al: Cerebrospinal fluid interleukin 8 concentrations and the subsequent development of postherpetic neuralgia. Am J Med 116:318-324, 2004
275. Sonkoly E et al: IL-31: A new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 117:411-417, 2006
276. Bilsborough J et al: IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol 117:418-425, 2006
277. Grimstad O et al: Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: A model of atopic dermatitis. Exp Dermatol 18:35-43, 2009
278. Takaoka A et al: Expression of IL-31 gene transcripts in NC/Nga mice with atopic dermatitis. Eur J Pharmacol 516:180-181, 2005
279. Takaoka A et al: Involvement of IL-31 on scratching behavior in NC/Nga mice with atopic-like dermatitis. Exp Dermatol 15:161-167, 2006
280. Ip WK et al: Interleukin-31 induces cytokine and chemokine production from human bronchial epithelial cells through activation of mitogen-activated protein kinase signalling pathways: Implications for the allergic response. Immunology 122:532-541, 2007
281. Le Saux S et al: Molecular dissection of human interleukin-31-mediated signal transduction through site-directed mutagenesis. J Biol Chem 285:3470-3477
282. Yagi Y et al: Interleukin-31 stimulates production of inflammatory mediators from human colonic subepithelial myofibroblasts. Int J Mol Med 19:941-946, 2007
283. Lin MW et al: Novel IL31RA gene mutation and ancestral OSMR mutant allele in familial primary cutaneous amyloidosis. Eur J Hum Genet 18:26-32
284. Venereau E et al: Definition and characterization of an inhibitor for interleukin-31. J Biol Chem 285:14955-14963
285. Church MK et al: Interaction of neuropeptides with human mast cells. Int Arch Allergy Appl Immunol 88:70-78, 1989
286. Bernstein JE et al: Effects of topically applied
capsaicin on moderate and severe psoriasis vulgaris.
J Am Acad Dermatol 15:504-507, 1986
287. Farber EM et al: Stress, symmetry, and psoriasis: Possible role of neuropeptides. J Am Acad Dermatol 14:305-311, 1986
288. Naukkarinen A et al: Quantitative histochemical analysis of mast cells and sensory nerves in psoriatic skin. J Pathol 180:200-205, 1996
289. Naukkarinen A, Nickoloff BJ, Farber EM: Quantification of cutaneous sensory nerves and their substance P content in psoriasis [see comments]. J Invest Dermatol 92:126-129, 1989
290. Bull HA et al: Expression of nerve growth factor receptors in cutaneous inflammation [see comments]. Br J Dermatol 139:776-783, 1998
291. Toyoda M, Morohashi M: Morphological assessment of the effects of cyclosporin A on mast cell– nerve relationship in atopic dermatitis. Acta Derm Venereol 78:321-325, 1998
292. Sugiura H et al: Density and fine structure of peripheral nerves in various skin lesions of atopic dermatitis. Arch Dermatol Res 289:125-131, 1997
293. Urashima R, Mihara M: Cutaneous nerves in atopic dermatitis. A histological, immunohistochemical and electron microscopic study. Virchows Arch 432:363-370, 1998
294. Ostlere LS, Cowen T, Rustin MH: Neuropeptides in the skin of patients with atopic dermatitis. Clin Exp Dermatol 20:462-467, 1995
295. Glinski W et al: Increased concentration of beta-endorphin in sera of patients with psoriasis and other inflammatory dermatoses. Br J Dermatol 131:260-264, 1994
296. Katsuno M et al: Neuropeptides concentrations in the skin of a murine (NC/Nga mice) model of atopic dermatitis. J Dermatol Sci 33:55-65, 2003
297. Jarvikallio A, Harvima IT, Naukkarinen A: Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res 295:2-7, 2003
298. Heyer G et al: Histamine and cutaneous nociception: Histamine-induced responses in patients with atopic eczema, psoriasis and urticaria. Acta Derm Venereol 78:123-126, 1998
299. Heyer GR, Hornstein OP: Recent studies of cutaneous nociception in atopic and non-atopic subjects. J Dermatol 26:77-86, 1999
300. Steinhoff M et al: Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151-158, 2000
301. Steinhoff M et al: Proteinase-activated receptor-2 mediates itch: A novel pathway for pruritus in human skin. J Neurosci 23:6176-6180, 2003
302. Shpacovitch VM et al: Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor kappaB in human dermal microvascular endothelial cells. J Invest Dermatol 118:380-385, 2002
303. Buddenkotte J et al: Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol 124:38-45, 2005
304. Rupprecht M et al: Physical stress-induced secretion of adrenal and pituitary hormones in patients with atopic eczema compared with normal controls. Exp Clin Endocrinol Diabetes 105:39-45, 1997
305. Rupprecht M et al: Cortisol,
corticotropin, and beta-endorphin responses to corticotropin- releasing hormone in patients with atopic eczema.
Psychoneuroendocrinology 20:543-551, 1995
306. Raap U, Kapp A: Neuroimmunological findings in allergic skin diseases. Curr Opin Allergy Clin Immunol 5:419-424, 2005
307. Stankovic N, Johansson O, Hildebrand C: Increased occurrence of PGP 9.5-immunoreactive epidermal Langerhans cells in rat plantar skin after sciatic nerve injury. Cell Tissue Res 298:255-260, 1999
308. Hsieh ST et al: Epidermal denervation and its effects on keratinocytes and Langerhans cells. J Neurocytol 25:513-524, 1996
309. Ding W, Wagner JA, Granstein RD: CGRP, PACAP, and
VIP modulate Langerhans cell function by inhibiting NF-kappaB activation.
J Invest Dermatol 127:2357-2367, 2007
310. Kodali S et al: Pituitary adenylate cyclase-activating polypeptide inhibits cutaneous immune function. Eur J Immunol 33:3070-3079, 2003
311. Gillardon F et al: Regulation of
calcitonin gene-related peptide mRNA expression in the hearts of spontaneously hypertensive rats by
testosterone.
Neurosci Lett 125:77-80, 1991
312. Asahina A et al: Inhibition of the induction of delayed-type and contact hypersensitivity by
calcitonin gene-related peptide.
J Immunol 154:3056-3061, 1995
313. Torii H et al: Regulation of cytokine expression in macrophages and the Langerhans cell-like line XS52 by
calcitonin gene-related peptide.
J Leukoc Biol 61:216-223, 1997
314. Grabbe S et al: alpha-Melanocyte-stimulating hormone induces hapten-specific tolerance in mice. J Immunol 156:473-478, 1996
315. Hartmeyer M et al: Human dermal microvascular endothelial cells express the melanocortin receptor type 1 and produce increased levels of IL-8 upon stimulation with alpha-melanocyte-stimulating hormone. J Immunol 159:1930-1937, 1997
316. Brzoska T et al: Molecular basis of the alpha-MSH/IL-1 antagonism. Ann N Y Acad Sci 885:230-238, 1999
317. Tanaka T et al: Effects of substance P and substance K on the growth of cultured keratinocytes. J Invest Dermatol 90:399-401, 1988
318. Ziche M et al: NK1-receptors mediate the proliferative response of human fibroblasts to tachykinins. Br J Pharmacol 100:11-14, 1990
319. Lusthaus S et al: Traumatic section of the median nerve: An unusual complication of Colles' fracture. Injury 24:339-340, 1993
320. Ansel JC et al: Interactions of the skin and nervous system. J Investig Dermatol Symp Proc 2:23-26, 1997
321. Aoki M, Tamai K, Saotome K: Substance P- and
calcitonin gene-related peptide-immunofluorescent nerves in the repair of experimental bone defects.
Int Orthop 18:317-324, 1994
322. Aldskogius H, Hermanson A, Jonsson CE: Reinnervation of experimental superficial wounds in rats. Plast Reconstr Surg 79:595-599, 1987
323. Kishimoto S: The regeneration of substance P-containing nerve fibers in the process of burn wound healing in the guinea pig skin. J Invest Dermatol 83:219-223, 1984
324. Rusanen M et al: Evolution of substance P immunofluorescent nerves in callus tissue during fracture healing. J Trauma 27:1340-1343, 1987
325. Wollina U et al: Vasoactive intestinal peptide and epidermal growth factor: Co-mitogens or inhibitors of keratinocyte proliferation in vitro? Int J Mol Med 2:725-730, 1998
326. Wollina U et al: Vasoactive intestinal peptide supports induced migration of human keratinocytes and their colonization of an artificial polyurethane matrix. Regul Pept 70:29-36, 1997
327. Haegerstrand A et al: Vasoactive intestinal polypeptide stimulates cell proliferation and adenylate cyclase activity of cultured human keratinocytes. Proc Natl Acad Sci U S A 86:5993-5996, 1989
328. Haegerstrand A Dalsgaard et al:
Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.
Proc Natl Acad Sci U S A 87:3299-3303, 1990
329. Wollina U: Vasoactive intestinal peptide supports spontaneous and induced migration of human keratinocytes and the colonization of an artificial polyurethane matrix. Ann N Y Acad Sci 865:551-555, 1998
330. Watson S, Burnside T, Carver W: Angiotensin II-stimulated
collagen gel contraction by heart fibroblasts: Role of the AT1 receptor and tyrosine kinase activity.
J Cell Physiol 177:224-231, 1998
331. Micera A et al: Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proc Natl Acad Sci U S A 98:6162-6167, 2001
332. Matsuda H et al: Role of nerve growth factor in cutaneous wound healing: Accelerating effects in normal and healing-impaired diabetic mice. J Exp Med 187:297-306, 1998
333. Kawamoto K, Matsuda H: Nerve growth factor and wound healing. Prog Brain Res 146:369-384, 2004
334. Muangman P et al: Nerve growth factor accelerates wound healing in diabetic mice. Wound Repair Regen 12:44-52, 2004
335. Blomme EA et al: Parathyroid hormone-related protein is a positive regulator of keratinocyte growth factor expression by normal dermal fibroblasts. Mol Cell Endocrinol 152:189-197, 1999
336. Blomme EA et al: Spatial and temporal expression of parathyroid hormone-related protein during wound healing. J Invest Dermatol 112:788-795, 1999
337. Olerud JE et al: Protein gene product 9.5 is expressed by fibroblasts in human cutaneous wounds. J Invest Dermatol 111:565-572, 1998
338. Lee KF et al: Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737-749, 1992
339. Ikoma A et al: The neurobiology of itch. Nat Rev Neurosci 7:535-547, 2006
340. Dillon SR et al: Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752-760, 2004
341. Homey B et al: Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118:178-189, 2006
342. Jones EA, Bergasa NV: The pruritus of cholestasis and the opioid system [clinical conference]. Jama 268:3359-3362, 1992
343. Jones EA, Bergasa NV: The pruritus of cholestasis [In Process Citation]. Hepatology 29:1003-1006, 1999
344. Johansson O et al: A serotonin-like immunoreactivity is present in human cutaneous melanocytes. J Invest Dermatol 111:1010-1014, 1998
345. Klein TW: Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5:400-411, 2005
346. Singh ME, McGregor IS, Mallet PE: Repeated exposure to Delta(9)-tetrahydrocannabinol alters heroin-induced locomotor sensitisation and Fos-immunoreactivity. Neuropharmacology 49:1189-1200, 2005
347. Akerman S, Kaube H, Goadsby PJ: Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol 142:1354-1360, 2004
348. van der Stelt M et al: Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. Embo J 24:3026-3037, 2005
349. Ikoma et al: Anatomy and neurophysiology of pruritus. Semin Cutan Med Surg 30:64-70, 2011