1. LaBonne C, Bronner-Fraser M: Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15:81-112, 1999
2. Holbrook KA et al: The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45. Anat Embryol (Berl) 180(5):443-455, 1989
3. Westerhof W: The discovery of the human melanocyte. Pigment Cell Res 19(3):183-193, 2006
4. Christiansen JH, Coles EG, Wilkinson DG: Molecular control of neural crest formation, migration and differentiation. Curr Opin Cell Biol 12(6):719-724, 2000
5. Kleber M et al: Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J Cell Biol 169(2):309-320, 2005
6. Dunn KJ et al: WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action. Pigment Cell Res 18(3):167-180, 2005
7. Lee HY et al: Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303(5660):1020-1023, 2004
8. Jin EJ et al: Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo. Dev Biol 233(1):22-37, 2001
9. Dunn KJ et al: Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci U S A 97(18):10050-10055, 2000
10. Grimes CA, Jope RS: The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65(4):391-426, 2001
11. Liu T et al: G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science 292(5522):1718-1722, 2001
12. Goding CR: Mitf from neural crest to melanoma: Signal transduction and transcription in the melanocyte lineage. Genes Dev 14(14):1712-1728, 2000
13. Kawabata M, Imamura T, Miyazono K: Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9(1):49-61, 1998
14. Botchkarev
VA: Bone morphogenetic proteins and their antagonists in skin and hair follicle biology.
J Invest Dermatol 120(1):36-47, 2003
15. Pla P, Larue L: Involvement of endothelin receptors in normal and pathological development of neural crest cells. Int J Dev Biol 47(5):315-325, 2003
16. Jackson IJ: Homologous pigmentation mutations in human, mouse and other model organisms. Hum Mol Genet 6(10):1613-1624, 1997
17. Nishikawa S et al: In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: Two distinct waves of c-kit-dependency during melanocyte development. Embo J 10(8):2111-2118, 1991
18. Wehrle-Haller B: The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res 16(3):287-296, 2003
19. Vliagoftis H, Worobec AS, Metcalfe DD: The protooncogene c-kit and c-kit ligand in human disease. J Allergy Clin Immunol 100(4):435-440, 1997
20. Spritz RA: Piebaldism, Waardenburg syndrome, and related disorders of melanocyte development. Semin Cutan Med Surg 16(1):15-23, 1997
21. Halaban R, Hebert, DN, Fisher, DE: Biology of Melanocytes. In: Fitzpatrick's Dermatology in General Medicine. 6th edition, edited by IM Freedberg, AZ Eisen, K Wolff, KF Austen, LA Goldsmith, SI Katz. New York, McGraw-Hill, 2003, pp. 127-148
22. Spritz RA: The molecular basis of human piebaldism. Pigment Cell Res 5(5 Pt 2):340-343, 1992
23. Mizoguchi M: Melanocyte development: With a message of encouragement to young women scientists. Pigment Cell Res 17(5):533-544, 2004
24. Kos L et al: Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development. Pigment Cell Res 12(1):13-21, 1999
25. Vleminckx K, Kemler R: Cadherins and tissue formation: Integrating adhesion and signaling. Bioessays 21(3):211-220, 1999
26. Nishimura EK et al: Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Dev Biol 215(2):155-166, 1999
27. Jouneau A et al: Plasticity of cadherin-catenin expression in the melanocyte lineage. Pigment Cell Res 13(4):260-272, 2000
28. Tolleson WH: Human melanocyte biology, toxicology, and pathology. J Environ Sci Health 23(2):105-161, 2005
29. Sommer L: Checkpoints of melanocyte stem cell development. Science's STKE 298:pe42, 2005
30. Steingrimsson E, Copeland NG, Jenkins NA: Melanocyte stem cell maintenance and hair graying. Cell 121(1):9-12, 2005
31. Fitzpatrick TB, Breathnach AS: [The Epidermal Melanin Unit System]. [Article in German.] Dermatol Wochenschr 147:481-489, 1963
32. Valyi-Nagy IT et al: Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact. Lab Invest 69(2):152-159, 1993
33. Jimbow K et al: Biology of melanocytes. In: Fitzpatrick's Dermatology in General Medicine, edited by IM Freedberg, AZ Eisen, K Wolff, KF Austen, LA Goldsmith, SI Katz, TB Fitzpatrick. New York, McGraw-Hill, 1999, pp. 192-220.
34. Szabo G: The regional anatomy of the human intugement with special reference to the distribution of hair follicles, sweat glands and melanocytes. Phil Trans R Soc Lond 252:447-485, 1967
35. Quevedo WC, Holstein, TJ: General Biology of Mammalian Pigmentation. In: The Pigmentary System Physiology and Pathophysiology, edited by JJ Nordlund, RE Boissy, VJ Hearing, RA King, JP Ortonne. New York, Oxford University Press, 1998, pp. 43-56.
36. Minwalla L et al: Keratinocytes play a role in regulating distribution patterns of recipient melanosomes in vitro. J Invest Dermatol 117(2):341-347, 2001
37. Tobin DJ, Paus R: Graying: Gerontobiology of the hair follicle pigmentary unit. Exp Gerontol 36(1):29-54, 2001
38. Botchkareva NV et al: SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. Faseb J 15(3):645-658, 2001
39. Ito S: Biochemistry and physiology of melanin. In: Pigmentation and Pigmentary Disorders, edited by N Levine. Boca Raton, FL, CRC Press, 1993, pp. 34-59
40. Slominski A et al: Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84(4):1155-1228, 2004
41. Boissy RE: Extracutaneous Melanocytes. In: The Pigmentary System Physiology and Pathophysiology, edited by JJ Nordlund, RE Boissy, VJ Hearing, RA King, JP Ortonne. New York, Oxford University Press, 1998, pp. 59-69
42.
Silver J, Sapiro, J: Axonal guidance during development of the optic nerve.
J Comp Neurol 202:521-538, 1988
43. Strongin
AC, Guillery RW: The distribution of melanin in the developing optic cup and stalk and its relation to cellular degeneration.
J Neurosci 1(11):1193-1204, 1981
44. Creel D, O'Donnell FE, Jr., Witkop CJ, Jr. Visual system anomalies in human ocular albinos. Science 201(4359):931-933, 1978
45. Guillery RW: Visual pathways in albinos. Sci Am 230(5):44-54, 1974
46. Wangemann P: K +cycling and the endocochlear potential. Hear Res 165(1-2):1-9, 2002
47. Ando M, Takeuchi S: Immunological identification of an inward rectifier K+ channel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats. Cell Tissue Res 298(1):179-183, 1999
48. Holme RH, Steel KP: Genes involved in deafness. Curr Opin Genet Dev 9(3):309-314, 1999
49. Price ER, Fisher, DE: Sensorineural deafness and pigmentation genes: Melanocytes and the MITF transcriptional network. Neuron 30:15, 2001
50. Watanabe K et al: Identification of a distal enhancer for the melanocyte-specific promoter of the MITF gene. Pigment Cell Res 15(3):201-211, 2002
51. King RA: Albinism. In: Genetic hypomelanoses: Disorders characterized by generalized hypomelanoses in The Pigmentary System Physiology and Pathophysiology, edited by JJ Nordlund, RE Boissy, VJ Hearing, RA King, JP Ortonne. New York, Oxford University Press, 1998, pp. 553-575
52. Tachibana M: Sound needs sound melanocytes to be heard. Pigment Cell Res 12(6):344-354, 1999
53. Goldgeier MH et al: The distribution of melanocytes in the leptomeninges of the human brain. J Invest Dermatol 82(3):235-238, 1984
54. Rozanowska M et al: Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26(5-6):518-525, 1999
55. Enochs WS et al: Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204(2):417-423, 1997
56. Raposo G, Marks MS: The dark side of lysosome-related organelles: Specialization of the endocytic pathway for melanosome biogenesis. Traffic 3(4):237-248, 2002
57. Inazu M, Mishima Y: Detection of eumelanogenic and pheomelanogenic melanosomes in the same normal human melanocyte. J Invest Dermatol 100(Suppl. 2):172S-175S, 1993
58. Oyehaug L et al: The regulatory basis of melanogenic switching. J Theor Biol 215(4):449-468, 2002
59. Kushimoto T et al: A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc Natl Acad Sci USA 98(19):10698-10703, 2001
60. Hearing VJ: Biogenesis of pigment granules: A sensitive way to regulate melanocyte function. J Dermatol Sci 37(1):3-14, 2005
61. Setaluri V: The melanosome: Dark pigment granule shines bright light on vesicle biogenesis and more. J Invest Dermatol 121(4):650-660, 2003
62. van Gelder CW, Flurkey WH, Wichers HJ: Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45(7):1309-1323, 1997
63. Ferguson CA, Kidson SH: The regulation of tyrosinase gene transcription. Pigment Cell Res 10(3):127-138, 1997
64. Wang N, Hebert DN: Tyrosinase maturation through the mammalian secretory pathway: Bringing color to life. Pigment Cell Res 19(1):3-18, 2006
65. Park HY, Gilchrest BA: Signaling pathways mediating melanogenesis. Cell Mol Biol 45(7):919-930, 1999
66. Beermann F et al: Misrouting of tyrosinase with a truncated cytoplasmic tail as a result of the murine platinum (cp) mutation. Exp Eye Res 61(5):599-607, 1995
67. Kobayashi T, Urabe, K, Winder, A: Oxidase activity of TRP-1 and interaction with other melanogenci enzymes. Pigment Cell Res 7:227-234, 1991
68. Jackson IJ et al: A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. Embo J 11(2):527-535, 1992
69. Kobayashi T et al: Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. Embo J 13(24):5818-5825, 1994
70. del Marmol V, Beermann F: Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 381(3):165-168, 1996
71. Sturm RA et al: Chromosomal structure of the human TYRP1 and TYRP2 loci and comparison of the tyrosinase-related protein gene family. Genomics 29(1):24-34, 1995
72. Abbott C et al: The human homolog of the mouse brown gene maps to the short arm of chromosome 9 and extends the known region of homology with mouse chromosome 4. Genomics 11(2):471-473, 1991
73. Winder AJ et al: The mouse brown (b) locus protein functions as a dopachrome tautomerase. Pigment Cell Res 7(5):305-310, 1994
74. Zhao H et al: Human TRP-1 has tyrosine hydroxylase but no dopa oxidase activity. Pigment Cell Res 7(3):131-140, 1994
75. Jimenez-Cervantes C et al: Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur J Biochem 217(2):549-556, 1993
76. Halaban R, Moellmann G: Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc Natl Acad Sci USA 87(12):4809-4813, 1990
77. Kobayashi T et al: The Pmel 17/
silver locus protein. Characterization and investigation of its melanogenic function.
J Biol Chem 269(46):29198-29205, 1994
78. Boissy RE et al: Mutation in and lack of expression of tyrosinase-related protein-1 (TRP-1) in melanocytes from an individual with brown oculocutaneous albinism: A new subtype of albinism classified as “OCA3”. Am J Hum Genet 58(6):1145-1156, 1996
79. Kobayashi T et al: Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem 273(48):31801-31805, 1998
80. Orlow SJ et al: High-molecular-weight forms of tyrosinase and the tyrosinase-related proteins: Evidence for a melanogenic complex. J Invest Dermatol 103(2):196-201, 1994
81. Kuzumaki T et al: Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp Cell Res 207(1):33-40, 1993
82. del Marmol V et al: TRP-1 expression correlates with eumelanogenesis in human pigment cells in culture. FEBS Lett 327(3):307-310, 1993
83. Yokoyama K et al: Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2. Biochim Biophys Acta 1217(3):317-321, 1994
84. Hornyak TJ, Hayes DJ, Ziff EB: Cell-density-dependent regulation of expression and glycosylation of dopachrome tautomerase/tyrosinase-related protein-2. J Invest Dermatol 115(1):106-112, 2000
85. Solano F et al: Dopachrome tautomerase is a zinc-containing enzyme. Biochem Biophys Res Commun 204(3):1243-1250, 1994
86. Battaini F, Pascale A: Protein kinase C signal transduction regulation in physiological and pathological aging. Ann N Y Acad Sci 1057:177-192, 2005
87. Park HY et al: The beta isoform of protein kinase C stimulates human melanogenesis by activating tyrosinase in pigment cells. J Biol Chem 268(16):11742-11749, 1993
88. Park HY et al: Protein kinase C-beta activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J Biol Chem 274(23):16470-16478, 1999
89. Wu H, Park HY: Protein kinase C-beta-mediated complex formation between tyrosinase and TRP-1. Biochem Biophys Res Commun 311(4):948-953, 2003
90. Mochly-Rosen D: Localization of protein kinases by anchoring proteins: A theme in signal transduction. Science 268(5208):247-251, 1995
91. Mochly-Rosen D, Gordon AS: Anchoring proteins for protein kinase C: A means for isozyme selectivity. Faseb J 12(1):35-42, 1998
92. Dempsey
EC et al: Protein kinase C isozymes and the regulation of diverse cell responses.
Am J Physiol Lung Cell Mol Physiol 279(3):L429-L438, 2000
93. Park HY et al: The receptor for activated C-kinase-I (RACK-I) anchors activated PKC-beta on melanosomes. J Cell Sci 117(Pt 16):3659-3668, 2004
94. Theos
AC et al: The
silver locus product Pmel17/gp100/Silv/ME20: Controversial in name and in function.
Pigment Cell Res 18(5):322-336, 2005
95. Berson JF et al: Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell 12(11):3451-3464, 2001
96. Valencia JC et al: Pmel17: Controversial indeed but critical to melanocyte function. Pigment Cell Res 19(3):250-252, 2006; author reply 253-257.
97. Gardner JM et al: The mouse pink-eyed dilution gene: Association with human Prader-Willi and Angelman syndromes. Science 257(5073):1121-1124, 1992
98. Hoashi T et al: MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J Biol Chem 280(14):14006-14016, 2005
99. Robinson MS: Adaptable adaptors for coated vesicles. Trends Cell Biol 14(4):167-174, 2004
100. Bonifacino JS, Traub LM: Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395-447, 2003
101. Theos
AC et al: Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes.
Mol Biol Cell 16(11):5356-5372, 2005
102. Wei ML: Hermansky-Pudlak syndrome: A disease of protein trafficking and organelle function. Pigment Cell Res 19(1):19-42, 2006
103. Delevoye C et al: AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. J Cell Biol 187(2):247-264, 2009
104. Lakkaraju A et al: It takes two to tango to the melanosome. J Cell Biol 187(2):161-163, 2009
105. Rinchik EM et al: A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature 361(6407):72-76, 1993
106. Lee ST et al: Organization and sequence of the human P gene and identification of a new family of transport proteins. Genomics 26:345-363, 1995
107. Costin GE et al: Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4. J Cell Sci 116(Pt 15):3203-3212, 2003
108. Brilliant MH: The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism type 2 (OCA2), and melanosomal pH. Pigment Cell Res 14(2):86-93, 2001
109. Ni-Komatsu L, Orlow SJ: Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: Effects of altering intracellular pH and pink-eyed dilution gene expression. Exp Eye Res 82(3):519-528, 2006
110. Puri N, Gardner JM, Brilliant MH: Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes. J Invest Dermatol 115(4):607-613, 2000
111. Lamason RL et al: SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310(5755):1782-1786, 2005
112. Salopek TG, Jimbow K: Induction of melanogenesis during the various melanoma growth phases and the role of tyrosinase, lysosome-associated membrane proteins, and p90 calnexin in the melanogenesis cascade. J Investig Dermatol Symp Proc 1(2):195-202, 1996
113. Park HY et al: MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes. Biochem J 395(3):571-578, 2006
114. Du J et al: MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol 163(1):333-343, 2003
115. Yasumoto K et al: Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem 272(1):503-509, 1997
116. Steingrimsson E, Copeland NG, Jenkins NA: Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365-411, 2004
117. Tachibana M et al: Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 14(1):50-54, 1996
118. Shibahara S et al: Microphthalmia-associated transcription factor (MITF): Multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc 6(1):99-104, 2001
119. Hershey CL, Fisher DE: Genomic analysis of the Microphthalmia locus and identification of the MITF-J/Mitf-J isoform. Gene 347(1):73-82, 2005
120. Fuse N et al: Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun 219(3):702-707, 1996
121. Hemesath TJ et al: MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391(6664):298-301, 1998
122. Price ER et al: Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J Biol Chem 273(29):17983-17986, 1998
123. Wu M et al: c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 14(3):301-312, 2000
124. Xu W et al: Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res 255(2):135-143, 2000
125. Arias J et al: Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370(6486):226-229, 1994
126. Lalli E, Sassone-Corsi P: Signal transduction and gene regulation: The nuclear response to cAMP. J Biol Chem 269(26):17359-17362, 1994
127. McGill GG et al: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109(6):707-718, 2002
128. Chang KL, Folpe AL: Diagnostic utility of microphthalmia transcription factor in malignant melanoma and other tumors. Adv Anat Pathol 8(5):273-275, 2001
129. Dorvault CC et al: Microphthalmia transcription factor: A sensitive and specific marker for malignant melanoma in cytologic specimens. Cancer 93(5):337-343, 2001
130. Samija I, Lukac J, Maric-Brozic J, Kusic Z. Microphthalmia-associated transcription factor and tyrosinase as markers of melanoma cells in blood of patients with melanoma. Croat Med J 45(2):142-148, 2004
131. Garraway LA et al: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117-122, 2005
132. Tassabehji M, Newton VE, Read AP: Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 8(3):251-255, 1994
133. Du J et al: Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6(6):565-576, 2004
134. Steingrimsson E et al: Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 8(3):256-263, 1994
135. Carreira S et al: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433(7027):764-769, 2005
136. Loercher AE et al: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168(1):35-40, 2005
137. Mountjoy KG et al: The cloning of a family of genes that encode the melanocortin receptors. Science 257(5074):1248-1251, 1992
138. Gantz I et al: Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem 268(20):15174-15179, 1993
139. Rana BK: New insights into G-protein-coupled receptor signaling from the melanocortin receptor system. Mol Pharmacol 64(1):1-4, 2003
140. Luger TA, Scholzen T, Grabbe S: The role of alpha-melanocyte-stimulating hormone in cutaneous biology. J Investig Dermatol Symp Proc 2(1):87-93, 1997
141. Rouzaud F et al: MC1R and the response of melanocytes to ultraviolet radiation. Mutat Res 571(1-2):133-152, 2005
142. Kadekaro AL et al: Significance of the melanocortin 1 receptor in regulating human melanocyte pigmentation, proliferation, and survival. Ann N Y Acad Sci 994:359-365, 2003
143. Suzuki I et al: Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology 137(5):1627-1633, 1996
144. Lu D et al: Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371(6500):799-802, 1994
145. Ollmann MM et al: Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278(5335):135-138, 1997
146. Siegrist W et al: Interactions of alpha-melanotropin and agouti on B16 melanoma cells: Evidence for inverse agonism of agouti. J Recept Signal Transduct Res 17(1-3):75-98, 1997
147. Ha T et al: Defining the quantitative contribution of the melanocortin 1 receptor (MC1R) to variation in pigmentary phenotype. Ann N Y Acad Sci 994:339-347, 2003
148. Sturm RA, Teasdale RD, Box NF: Human pigmentation genes: Identification, structure and consequences of polymorphic variation. Gene 277(1-2):49-62, 2001
149. Schaffer JV, Bolognia JL: The melanocortin-1 receptor: Red hair and beyond. Arch Dermatol 137(11):1477-1485, 2001
150. Sturm RA et al: The role of melanocortin-1 receptor polymorphism in skin cancer risk phenotypes. Pigment Cell Res 16(3):266-272, 2003
151. Valverde P et al: Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 11(3):328-330, 1995
152. Smith R et al: Melanocortin 1 receptor variants in an Irish population. J Invest Dermatol 111(1):119-122, 1998
153. Flanagan N et al: The relation between melanocortin 1 receptor genotype and experimentally assessed ultraviolet radiation sensitivity. J Invest Dermatol 117(5):1314-1317, 2001
154. Healy E et al: Melanocortin-1-receptor gene and sun sensitivity in individuals without red hair. Lancet 355(9209):1072-1073, 2000
155. Bastiaens M et al: The melanocortin-1-receptor gene is the major freckle gene. Hum Mol Genet 10(16):1701-1708, 2001
156. Box NF et al: Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum Mol Genet 6(11):1891-1897, 1997
157. D'Orazio JA et al: Critical role for MC1R in UV tanning: Molecular mimicking and skin protection. Nature 443:340-344, 2006.
158. Ito S, Wakamatsu K: Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review. Pigment Cell Res 16(5):523-531, 2003
159. Sarangarajan R, Apte SP: The polymerization of melanin: A poorly understood phenomenon with egregious biological implications. Melanoma Res 16(1):3-10, 2006
160. Raper HS: The aerobic oxidases. Physiol Rev 8:245, 1928
161. Hearing VJ, Jimenez M: Mammalian tyrosinase—The critical regulatory control point in melanocyte pigmentation. Int J Biochem 19(12):1141-1147, 1987
162. Riley PA: The great DOPA mystery: The source and significance of DOPA in phase I melanogenesis. Cell Mol Biol (Noisy-le-grand) 45(7):951-960, 1999
163. Pawelek JM, Chakraborty, AK: The enzymology of melanogenesis. In: The Pigmentary System: Physiology and Pathophysiology, edited by JJ Nordlund, RE Boissy, VJ Hearing, RA King, JP Ortonne. New York, Oxford University Press, 1998, pp. 391-400
164. Nordlund JJ: The value of melanin as a sunscreen. In: Mechanisms of Suntanning, edited by JP Ortonne, R Ballotti. London, Martin Dunitz, Ltd., 2002, pp. 341-361
165. Marrot L et al: The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment. Photochem Photobiol 69(6):686-693, 1999
166. Wenczl E et al: (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J Invest Dermatol 111(4):678-682, 1998
167. Lacour JP et al: Cytoskeletal events underlying dendrite formation by cultured pigment cells. J Cell Physiol 151(2):287-299, 1992
168. Hirobe T: Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res 18(1):2-12, 2005
169. Kauser S et al: Regulation of human epidermal melanocyte biology by beta-endorphin. J Invest Dermatol 120(6):1073-1080, 2003
170. Hara M et al: Role of integrins in melanocyte attachment and dendricity. J Cell Sci 107:2739-2748, 1994
171. Scott G. Rac and rho: The story behind melanocyte dendrite formation. Pigment Cell Res 15(5):322-330, 2002
172. Scott G, Leopardi S: The cAMP signaling pathway has opposing effects on Rac and Rho in B16F10 cells: Implications for dendrite formation in melanocytic cells. Pigment Cell Res 16(2):139-148, 2003
173. Hara M et al: Kinesin participates in melanosomal movement along melanocyte dendrites. J Invest Dermatol 114(3):438-443, 2000
174. Hirokawa N et al: Kinesin associates with anterogradely transported membranous organelles in vivo. J Cell Biol 114(2):295-302, 1991
175. Okada Y et al: The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81(5):769-780, 1995
176. Byers HR et al: Role of cytoplasmic dynein in melanosome transport in human melanocytes. J Invest Dermatol 114(5):990-997, 2000
177. Bloom GS: Motor proteins for cytoplasmic microtubules. Curr Opin Cell Biol 4(1):66-73, 1992
178. Endow SA, Titus MA: Genetic approaches to molecular motors. Annu Rev Cell Biol 8:29-66, 1992
179. Gelfand VI, Scholey JM: Cell biology. Every motion has its motor. Nature 359(6395):480-482, 1992
180. Coy DL, Howard J: Organelle transport and sorting in axons. Curr Opin Neurobiol 4(5):662-667, 1994
181. Wu X et al: Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol 143(7):1899-1918, 1998
182. Matesic LA, Copeland, NG, Jenkins, NA: A genetic approach to the study of vesicle transport in the mouse. In: Mechanisms of Suntanning, edited by JP Ortonne, R Ballotti. Nice, Martin Dunitz, 2002:199-208
183. Bahadoran P, Ballotti, R: Rab27a and melanosome transport in human melanocytes. In: Mechanisms of Suntanning, edited by JP Ortonne, R Ballotti. Nice, Martin Dunitz, 2002, pp. 209-214
184. Griscelli C et al: A syndrome associating partial albinism and immunodeficiency. Am J Med 65(4):691-702, 1978
185. Pastural E et al: Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 16(3):289-292, 1997
186. Van Gele M, Dynoodt P, Lambert J. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res 22(3):268-82, 2009
187. Van Den Bossche K, Naeyaert JM, Lambert J: The quest for the mechanism of melanin transfer. Traffic 7(7):769-778, 2006
188. Scott G et al: Filopodia are conduits for melanosome transfer to keratinocytes. J Cell Sci 115(Pt 7):1441-1451, 2002
189. Nystedt S et al: Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A 91(20):9208-9212, 1994
190. Nystedt S et al: Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 232(1):84-89, 1995
191. Scott G et al: Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation. J Invest Dermatol 117(6):1412-1420, 2001
192. Cardinali G et al: Keratinocyte growth factor promotes melanosome transfer to keratinocytes. J Invest Dermatol 125(6):1190-1199, 2005
193. Friedmann PS, Gilchrest BA: Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol 133(1):88-94, 1987
194. Wintzen M et al: Keratinocytes produce beta-endorphin and beta-lipotropic hormone after stimulation by UV, IL-1a or phorbol esters. J Invest Dermatol 104:641, 1995
195. Schauer E et al: Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J Clin Invest 93(5):2258-2262, 1994
196. Lerner AB, McGuire JS: Effect of alpha- and beta melanocyte stimulating hormones on the skin colour of man. Nature 189:176-179, 1961
197. Levine N et al: Induction of skin tanning by subcutaneous administration of a potent synthetic melanotropin. Jama 266(19):2730-2736, 1991
198. Jabbour SA. Cutaneous manifestations of endocrine disorders: A guide for dermatologists. Am J Clin Dermatol 4(5):315-331, 2003
199. Assie G et al: The Nelson's syndrome revisited. Pituitary 7(4):209-215, 2004
200. Slominski A et al:
Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress.
Physiol Rev 80(3):979-1020, 2000
201. Abdel-Malek ZA et al: Melanoma prevention strategy based on using tetrapeptide alpha-MSH analogs that protect human melanocytes from UV-induced DNA damage and cytotoxicity. Faseb J 20(9):1561-1563, 2006
202. Cheli Y et al: αMSH and cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J Biol Chem 284(28):18699-18706, 2009
203. Yada Y, Higuchi K, Imokawa G: Effects of endothelins on signal transduction and proliferation in human melanocytes. J Biol Chem 266(27):18352-18357, 1991
204. Imokawa G, Yada Y, Miyagishi M: Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 267(34):24675-24680, 1992
205. Hara M, Yaar M, Gilchrest BA: Endothelin-1 of keratinocyte origin is a mediator of melanocyte dendricity. J Invest Dermatol 105(6):744-748, 1995
206. Yohn JJ et al: Cultured human keratinocytes synthesize and secrete endothelin-1. J Invest Dermatol 100(1):23-26, 1993
207. Funasaka Y et al: Modulation of melanocyte-stimulating hormone receptor expression on normal human melanocytes: Evidence for a regulatory role of ultraviolet B, interleukin-1alpha, interleukin-1beta, endothelin-1 and tumour necrosis factor-alpha. Br J Dermatol 139(2):216-224, 1998
208. Tada A et al: Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ 9(7):575-584, 1998
209. Kadekaro AL et al: Alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res 65(10):4292-4299, 2005
210. Imokawa G, Kobayasi T, Miyagishi M: Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes. Cross-talk via trans-activation of the tyrosine kinase c-kit receptor. J Biol Chem 275(43):33321-33328, 2000
211. Hachiya A et al: The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet-B-induced pigmentation. J Invest Dermatol 116(4):578-586, 2001
212. Tomita Y, Maeda K, Tagami H: Mechanisms for hyperpigmentation in postinflammatory pigmentation, urticaria pigmentosa and sunburn. Dermatologica 179(Suppl. 1):49-53, 1989
213. Ruzicka T: Leukotrienes in atopic eczema. Acta Derm Venereol Suppl (Stockh) 144:48-49, 1989
214. Ikai K: Psoriasis and the arachidonic acid cascade. J Dermatol Sci 21(3):135-146, 1999
215. Scott G et al: Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: Analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. J Invest Dermatol 122(5):1214-1224, 2004
216. Scott G et al: Effects of PGF2alpha on human melanocytes and regulation of the FP receptor by ultraviolet radiation. Exp Cell Res 304(2):407-416, 2005
217. Norris DA, Morelli, JG, Fujita, M: Melanocytes interactions in skin. In: The Pigmentary System: Physiology and Pathophysiology, edited by JJ Nordlund, RE Boissy, VJ Hearing, RA King, JP Ortonne. New York, Oxford University Press, 1998, pp. 123-133
218. Zachariae CO, Thestrup-Pedersen K, Matsushima K: Expression and secretion of leukocyte chemotactic cytokines by normal human melanocytes and melanoma cells. J Invest Dermatol 97(3):593-599, 1991
219. Gantz I et al: Molecular cloning of the human histamine H2 receptor. Biochem Biophys Res Commun 178(3):1386-1392, 1991
220. Yoshida M, Takahashi Y, Inoue S: Histamine induces melanogenesis and morphologic changes by protein kinase A activation via H2 receptors in human normal melanocytes. J Invest Dermatol 114(2):334-342, 2000
221. Levi-Montalcini R: The nerve growth factor 35 years later. Science 237(4819):1154-1162, 1987
222. Hohn A et al: Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344(6264):339-341, 1990
223. Maisonpierre PC et al: Neurotrophin-3: A neurotrophic factor related to NGF and BDNF. Science 247(4949 Pt 1):1446-1451, 1990
224. Rosenthal A et al: Primary structure and biological activity of a novel human neurotrophic factor. Neuron 4(5):767-773, 1990
225. Hallbook F, Ibanez CF, Persson H: Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6(5):845-858, 1991
226. Barde YA, Edgar D, Thoenen H: Purification of a new neurotrophic factor from mammalian brain. Embo J 1(5):549-553, 1982
227. Leibrock J et al: Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341(6238):149-152, 1989
228. Peacocke M et al: Induction of nerve growth factor receptors on cultured human melanocytes. Proc Natl Acad Sci USA 85(14):5282-5286, 1988
229. Botchkarev
VA et al: Neurotrophins in skin biology and pathology.
J Invest Dermatol Aug
126(8):1719-1727, 2006
230. Yaar M et al: Evidence for nerve growth factor-mediated paracrine effects in human epidermis. J Cell Biol 115(3):821-828, 1991
231. Zhai S et al: Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating BCL-2 levels. Exp Cell Res 224(2):335-343, 1996
232. Stefanato CM et al: Modulations of nerve growth factor and Bcl-2 in ultraviolet-irradiated human epidermis. J Cutan Pathol 30(6):351-357, 2003
233. Halaban R, Ghosh S, Baird A: bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Dev Biol 23(1):47-52, 1987
234. Halaban R et al: Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol 107(4):1611-1619, 1988
235. Halaban R et al: Paracrine stimulation of melanocytes by keratinocytes through basic fibroblast growth factor. Ann N Y Acad Sci 548:180-190, 1988
236. Moncada S, Palmer RM, Higgs EA: Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109-142, 1991
237. Schmidt HH, Walter U: NO at work. Cell 78(6):919-925, 1994
238. Joshi M, Strandhoy J, White WL: Nitric oxide synthase activity is up-regulated in melanoma cell lines: A potential mechanism for metastases formation. Melanoma Res 6(2):121-126, 1996
239. Heck DE et al: Epidermal growth factor suppresses nitric oxide and hydrogen peroxide production by keratinocytes. Potential role for nitric oxide in the regulation of wound healing. J Biol Chem 267(30):21277-21280, 1992
240. Becherel PA et al: Involvement of cyclic AMP and nitric oxide in immunoglobulin E-dependent activation of Fc epsilon RII/CD23+ normal human keratinocytes. J Clin Invest 93(5):2275-2279, 1994
241. Fecker LF et al: Inducible nitric oxide synthase is expressed in normal human melanocytes but not in melanoma cells in response to tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide. J Invest Dermatol 118(6):1019-1025, 2002
242. Romero-Graillet C et al: Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis. J Clin Invest 99(4):635-642, 1997
243. Martini FH: Fundamentals of Anatomy and Physiology: The Endocrine System, 4th edition, Upper Saddle River, NJ, Prentice Hall International, 1998
244. Grando SA, Pittelkow MR, Schallreuter KU: Adrenergic and cholinergic control in the biology of epidermis: Physiological and clinical significance. J Invest Dermatol 126(9):1948-1965, 2006
245. Farooqui JZ et al: Isolation of a unique melanogenic inhibitor from human skin xenografts: Initial in vitro and in vivo characterization. J Invest Dermatol 104(5):739-743, 1995
246. Vijayan E et al: Purification of human skin tyrosinase and its protein inhibitor: Properties of the enzyme and the mechanism of inhibition by protein. Arch Biochem Biophys Sep 217(2):738-747, 1982
247. Hoekstra D et al: Membrane dynamics and cell polarity: The role of sphingolipids. J Lipid Res 44(5):869-877, 2003
248. Kim EJ et al: Modulation of vascular endothelial growth factor receptors in melanocytes. Exp Dermatol 14(8):625-633, 2005
249. Kim DS et al: Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell Signal 14(9):779-785, 2002
250. Yaar M et al: Bone morphogenetic protein-4: A novel modulator of melanogenesis. J Biol Chem 281:25307-25314, 2006
251. Park HY et al: Role of BMP-4 and its signaling pathways in cultured human melanocytes. Int J Cell Biol 2009:750482, 2009
252. Sharov AA et al: Bone morphogenetic protein (BMP) signaling controls hair pigmentation by means of cross-talk with the melanocortin receptor-1 pathway. Proc Natl Acad Sci U S A 102(1):93-98, 2005
253. Whitfield JF et al: Calcium, cyclic AMP and protein kinase C—Partners in mitogenesis. Cancer Metastasis Rev 5(3):205-250, 1987
254. Iyengar R: Gating by cyclic AMP: Expanded role for an old signaling pathway. Science 271(5248):461-463, 1996
255. Wood JM, Gibbons NC, Schallreuter KU: Melanocortins in human melanocytes. Cell Mol Biol (Noisy-le-grand) 52(2):75-78, 2006
256. Lerner AB. My 60 years in pigmentation. Pigment Cell Res 12(2):131-144, 1999
257. Edelman AM, Blumenthal DK, Krebs EG: Protein serine/threonine kinases. Annu Rev Biochem 56:567-613, 1987
258. Pawelek JM: Studies on the Cloudman melanoma cell line as a model for the action of MSH. Yale J Biol Med 58(6):571-578, 1985
259. Montminy M: Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807-822, 1997
260. Walsh DA et al: Krebs EG: Purification and characterization of a protein inhibitor of
adenosine 3′,5′-monophosphate-dependent protein kinases.
J Biol Chem 246(7):1977-1985, 1971
261. Nishizuka Y: Turnover of inositol phospholipids and signal transduction. Science 225(4668):1365-1370, 1984
262. Gordon PR, Gilchrest BA: Human melanogenesis is stimulated by diacylglycerol. J Invest Dermatol 93(5):700-702, 1989
263. Allan AE, Archambault M, Messana E, Gilchrest BA: Topically applied diacylglycerols increase pigmentation in guinea pig skin. J Invest Dermatol 105(5):687-692, 1995
264. Yamanishi DT et al: The differential expression of protein kinase C genes in normal human neonatal melanocytes and metastatic melanomas. Carcinogenesis 12(1):105-109, 1991
265. Park HY et al: Expression of protein kinase C in cultured human melanocytes. J Invest Dermatol 102:440A, 1994
266. Imokawa G, Yada Y, Kimura M: Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem J 314(Pt 1):305-312, 1996
267. Leurs R, Smit MJ, Timmerman H: Molecular pharmacological aspects of histamine receptors. Pharmacol Ther 66(3):413-463, 1995
268. Yuan Y et al: Histamine increases venular permeability via a phospholipase C-NO synthase-guanylate cyclase cascade. Am J Physiol 264(5 Pt 2):H1734-H1739, 1993
269. Slominski A et al: Preservation of eumelanin hair pigmentation in proopiomelanocortin-deficient mice on a nonagouti (a/a) genetic background. Endocrinology 146(3):1245-1253, 2005
270. Gillbro JM et al: Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol 123(2):346-353, 2004
271. Gilchrest BA et al: The photobiology of the tanning response. In: The Pigmentary System: Physiology and Pathophysiology, edited by JJ Nordlund, RE Boissy, VJ Hearing, RA King, JP Ortonne. New York, Oxford University Press, 1998, pp. 359-372
272. Dillman AM. Photobiology of skin pigmentation. In: Pigmentation and Pigmentary Disorders, edited by N Levine. Boca Raton, CRC Press, 1993, pp. 61-94
273. Pathak MA et al: Melanin formation in human skin induced by long-wave ultra-violet and visible light. Nature 193:148-150, 1962
274. Tadokoro T et al: Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation. J Invest Dermatol 124(6):1326-1332, 2005
275. Gasparro FP. Photodermatology: Progress, problems and prospects. Eur J Dermatol 10(4):250-254, 2000
276. Eller MS. Repair of DNA photodamage in human skin. In: Photodamage. edited by BA Gilchrest. Cambridge, MA, Blackwell Scientific Publications, 1995, pp. 26-50
277. Punnonen K, Yuspa SH: Ultraviolet light irradiation increases cellular diacylglycerol and induces translocation of diacylglycerol kinase in murine keratinocytes. J Invest Dermatol 99(2):221-226, 1992
278. Freeman SE et al: Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci USA 86(14):5605-5609, 1989
279. Parrish JA, Jaenicke KF, Anderson RR: Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 36(2):187-191, 1982
280. Eller MS, Ostrom K, Gilchrest BA: DNA damage enhances melanogenesis. Proc Natl Acad Sci USA 93(3):1087-1092, 1996
281. Nylander K et al: Transcriptional activation of tyrosinase and TRP-1 by p53 links UV irradiation to the protective tanning response. J Pathol 190(1):39-46, 2000
282. Khlgatian MK et al: Tyrosinase gene expression is regulated by p53. J Invest Dermatol 118(1):126-132, 2002
283. Eller MS, Gilchrest BA. Tanning as part of the eukaryotic SOS response. Pigment Cell Res 13(Suppl. 8):94-97, 2000
284. Gilchrest BA et al: Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol 63(1):1-10, 1996
285. Park HY et al: Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 66(9):1493-1506, 2009
286. Cui R et al: Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128(5):853-864, 2007
287. Schallreuter KU et al: Regulation of melanogenesis – Controversies and new concepts. Exp Dermatol 17(5):395-404, 2007
288. Vile GF: Active
oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts.
FEBS Lett 412(1):70-74, 1997
289. Slominski A, Tobin DJ, Paus R: Does p53 regulate skin pigmentation by controlling proopiomelanocortin gene transcription? Pigment Cell Res 20(4):307-308, 2007
290. Gilchrest BA, Blog FB, Szabo G: Effects of aging and chronic sun exposure on melanocytes in human skin. J Invest Dermatol 73(2):141-143, 1979
291. Schwahn DJ et al: Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. Pigment Cell Res 18(3):203-213, 2005
292. Bennett DC, Medrano EE: Molecular regulation of melanocyte senescence. Pigment Cell Res 15(4):242-250, 2002
293. Ortonne JP. The effects of ultraviolet exposure on skin melanin pigmentation. J Int Med Res 18(Suppl. 3):8C-17C, 1990
294. Sturm RA: Human pigmentation genes and their response to solar UV radiation. Mutat Res 422(1):69-76, 1998