Skip to Main Content

Prions are infectious proteins that cause degeneration of the central nervous system (CNS). Prion diseases are disorders of protein conformation, the most common of which in humans is called Creutzfeldt-Jakob disease (CJD). CJD typically presents with dementia and myoclonus, is relentlessly progressive, and generally causes death within a year of onset. Most CJD patients are between 50 and 75 years of age; however, patients as young as 17 and as old as 83 have been recorded.

In mammals, prions reproduce by binding to the normal, cellular isoform of the prion protein (PrPC) and stimulating conversion of PrPC into the disease-causing isoform (PrPSc). PrPC is rich in α-helix and has little β-structure, while PrPSc has less α-helix and a high amount of β-structure (Fig. 383-1). This α-to-β structural transition in the prion protein (PrP) is the fundamental event underlying prion diseases (Table 383-1).

Figure 383-1

Structures of prion proteins. A. NMR structure of Syrian hamster recombinant (rec) PrP(90–231). Presumably, the structure of the α-helical form of recPrP(90–231) resembles that of PrPC. recPrP(90–231) is viewed from the interface where PrPSc is thought to bind to PrPC. Shown are: α-helices A (residues 144–157), B (172–193), and C (200–227). Flat ribbons depict β-strands S1 (129–131) and S2 (161–163). (A, from SB Prusiner: N Engl J Med 344:1516, 2001; with permission.) B. Structural model of PrPSc. The 90–160 region has been modeled onto a β-helical architecture while the COOH terminal helices B and C are preserved as in PrPC. (Image prepared by C. Govaerts.)

Table 383-1 Glossary of Prion Terminology

Four ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.