Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!



After studying this chapter, you should be able to:

  • Explain that the catabolism of triacylglycerols involves hydrolysis to free fatty acids and glycerol and indicate the fate of these metabolites.

  • Indicate that glycerol-3-phosphate is the substrate for the formation of both triacylglycerols and phosphoglycerols and that a branch point at phosphatidate leads to the synthesis of inositol phospholipids and cardiolipin or/and triacylglycerols and other phospholipids.

  • Explain that plasmalogens and platelet-activating factor (PAF) are formed by a complex pathway starting from dihydroxyacetone phosphate.

  • Illustrate the role of various phospholipases in the degradation and remodeling of phospholipids.

  • Explain that ceramide is the precursor from which all sphingolipids are formed.

  • Indicate how sphingomyelin and glycosphingolipids are produced by the reaction of ceramide with phosphatidylcholine or sugar residue(s), respectively.

  • Identify examples of disease processes caused by defects in phospholipid or sphingolipid synthesis or breakdown.


Acylglycerols constitute the majority of lipids in the body. Triacylglycerols are the major lipids in fat deposits and in food, and their roles in lipid transport and storage and in various diseases such as obesity, diabetes, and hyperlipoproteinemia will be described in subsequent chapters. The amphipathic nature of phospholipids and sphingolipids makes them ideally suitable as the main lipid component of cell membranes.

Phospholipids also take part in the metabolism of many other lipids. Some phospholipids have specialized functions; for example, dipalmitoyl lecithin is a major component of lung surfactant, which is lacking in respiratory distress syndrome of the newborn. Inositol phospholipids in the cell membrane act as precursors of hormone second messengers, and platelet-activating factor (PAF) is an alkylphospholipid. Glycosphingolipids, which contain sphingosine and sugar residues as well as a fatty acid are found in the outer leaflet of the plasma membrane with their oligosaccharide chains facing outward. They form part of the glycocalyx of the cell surface and are important (1) in cell adhesion and cell recognition, (2) as receptors for bacterial toxins (eg, the toxin that causes cholera), and (3) as ABO blood group substances. A dozen or so glycolipid storage diseases have been described (eg, Gaucher disease and Tay-Sachs disease), each due to a genetic defect in the pathway for glycolipid degradation in the lysosomes.


Triacylglycerols must be hydrolyzed by a lipase to their constituent fatty acids and glycerol before further catabolism can proceed. Much of this hydrolysis (lipolysis) occurs in adipose tissue with release of free fatty acids into the plasma, where they are found combined with serum albumin (see Figure 25–7). This is followed by free fatty acid uptake into tissues (including liver, heart, kidney, muscle, lung, testis, and adipose tissue, but not readily by brain), where they are oxidized to obtain energy or reesterified. The utilization of glycerol depends on whether such tissues have the enzyme glycerol kinase, which is found in significant ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.