Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!


The decision to initiate dialysis for the management of end stage renal disease (ESRD) usually depends on a combination of the pt’s symptoms, comorbid conditions, and laboratory parameters. Unless a living donor is identified, transplantation is deferred by necessity, due to the scarcity of deceased donor organs (median waiting time, 3–6 years at most transplant centers). Dialytic options include hemodialysis and peritoneal dialysis (PD). Roughly 85% of U.S. pts are started on hemodialysis.

Absolute indications for dialysis include severe volume overload refractory to diuretic agents, severe hyperkalemia and/or acidosis, severe encephalopathy not otherwise explained, and pericarditis or other serositis. Additional indications for dialysis include symptomatic uremia (Chap. 139) (e.g., intractable fatigue, anorexia, dysgeusia, nausea, vomiting, pruritus, difficulty maintaining attention and concentration) and protein-energy malnutrition/failure to thrive without other overt cause. No absolute serum creatinine, blood urea nitrogen, creatinine or urea clearance, or glomerular filtration rate (GFR) is used as an absolute cutoff for requiring dialysis, although most individuals experience, or will soon develop, symptoms and complications when the GFR is below ~10 mL/min. However, the “pre-emptive” initiation of dialysis in such pts, prior to the onset of clinical indications, does not improve outcomes in ESRD.


This requires direct access to the circulation, either via a native arteriovenous fistula (the preferred method of vascular access), usually at the wrist (a “Brescia-Cimino” fistula); an arteriovenous graft, usually made of polytetrafluoroethylene; a large-bore intravenous catheter; or a subcutaneous device attached to intravascular catheters. Blood is pumped though hollow fibers of an artificial kidney (the “dialyzer”) and bathed with a solution of favorable chemical composition (isotonic, free of urea and other nitrogenous compounds, and generally low in potassium). Dialysate [K+] is varied from 1 to 4 mM, depending on predialysis [K+] and the clinical setting. Dialysate [Ca2+] is typically 2.5 mg/dL (1.25 mM), [HCO3] typically 35 meq/L, and dialysate [Na+] 140 mM; these can also be modified, depending on the clinical situation. Most pts undergo dialysis thrice weekly, usually for 3–4 h. The efficiency of dialysis is largely dependent on the duration of dialysis, blood flow rate, dialysate flow rate, and surface area of the dialyzer.

Complications of hemodialysis are outlined in Table 140-1. Many of these relate to the process of hemodialysis as an intense, intermittent therapy. In contrast to the native kidney or to PD, both major dialytic functions (i.e., clearance of solutes and fluid removal, or “ultrafiltration”) are accomplished over relatively short time periods. The rapid flux of fluid can cause hypotension, even without a pt reaching “dry weight.” Hemodialysis-related hypotension is common in diabetic pts whose neuropathy prevents the compensatory responses (vasoconstriction and tachycardia) to intravascular volume depletion. Occasionally, confusion or other central nervous system symptoms will occur. The dialysis “disequilibrium syndrome” refers to the development of headache, confusion, and rarely seizures, ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.