++
The colon serves as a reservoir for the residues of meals that cannot be digested or absorbed (Figure 27–8). Motility in this segment is likewise slowed to allow the colon to absorb water, Na+, and other minerals. By removing about 90% of the fluid, it converts the 1000–2000 mL of isotonic chyme that enters it each day from the ileum to about 200–250 mL of semisolid feces.
++
+++
MOTILITY OF THE COLON
++
The ileum is linked to the colon by a structure known as the ileocecal valve, which restricts reflux of colonic contents, and particularly the large numbers of commensal bacteria, into the relatively sterile ileum. The portion of the ileum containing the ileocecal valve projects slightly into the cecum, so that increases in colonic pressure squeeze it shut, whereas increases in ileal pressure open it. It is normally closed. Each time a peristaltic wave reaches it, it opens briefly, permitting some of the ileal chyme to squirt into the cecum. When food leaves the stomach, the cecum relaxes and the passage of chyme through the ileocecal valve increases (gastroileal reflex). This is presumably a vagovagal reflex.
++
CLINICAL BOX 27–3 Ileus
When the intestines are traumatized, there is a direct inhibition of smooth muscle, which causes a decrease in intestinal motility. It is due in part to activation of opioid receptors. When the peritoneum is irritated, reflex inhibition occurs due to increased discharge of noradrenergic fibers in the splanchnic nerves. Both types of inhibition operate to cause paralytic (adynamic) ileus after abdominal surgeries. Because of the diffuse decrease in peristaltic activity in the small intestine, its contents are not propelled into the colon, and it becomes irregularly distended by pockets of gas and fluid. Intestinal peristalsis returns in 6–8 h, followed by gastric peristalsis, but colonic activity takes 2–3 days to return.
THERAPEUTIC HIGHLIGHTS Adynamic ileus can be relieved by passing a tube through the nose down to the small intestine and aspirating the fluid and gas for a few days until peristalsis returns. The occurrence of ileus has been reduced by more widespread use of minimally invasive (eg, laparoscopic) surgery. Postsurgical regimens also encourage early ambulation, where possible, which tends to enhance intestinal motility. There are also ongoing trials of specific opioid antagonists in this condition.
++
The movements of the colon include segmentation contractions and peristaltic waves like those occurring in the small intestine. Segmentation contractions mix the contents of the colon and, by exposing more of the contents to the mucosa, facilitate absorption. Peristaltic waves propel the contents toward the rectum, although weak antiperistalsis is sometimes seen. A third type of contraction that occurs only in the colon is the mass action contraction, occurring about 10 times per day, in which there is simultaneous contraction of the smooth muscle over large confluent areas. These contractions move material from one portion of the colon to another (Clinical Box 27–4). They also move material into the rectum, and rectal distension initiates the defecation reflex (see below).
++
CLINICAL BOX 27–4 Hirschsprung Disease
Some children have a genetically determined condition of abnormal colonic motility known as Hirschsprung disease or aganglionic megacolon, which is characterized by abdominal distension, anorexia, and lassitude. The disease is typically diagnosed in infancy, and affects as many as 1 in 5000 live births. It is due to a congenital absence of the ganglion cells in both the myenteric and submucous plexuses of a segment of the distal colon, as a result of failure of the normal cranial-to-caudal migration of neural crest cells during development. The action of endothelins on the endothelin B receptor (see Chapter 7) are necessary for normal migration of certain neural crest cells; megacolon developed in knockout mice lacking endothelin B receptors. In addition, one cause of congenital aganglionic megacolon in humans appears to be a mutation in the endothelin B receptor gene. The absence of peristalsis in patients with this disorder causes feces to pass the aganglionic region with difficulty, and children with the disease may defecate as infrequently as once every 3 weeks.
THERAPEUTIC HIGHLIGHTS The symptoms of Hirschsprung disease can be relieved completely if the aganglionic portion of the colon is resected and the portion of the colon above it anastomosed to the rectum. However, this is not possible if an extensive segment is involved. In this case, patients may require a colectomy.
++
The movements of the colon are coordinated by the BER of the colon. The frequency of this wave, unlike the wave in the small intestine, increases along the colon, from about 2/min at the ileocecal valve to 6/min at the sigmoid.
+++
TRANSIT TIME IN THE SMALL INTESTINE & COLON
++
The first part of a test meal reaches the cecum in about 4 h in most individuals, and all the undigested portions have entered the colon in 8 or 9 h. On average, the first remnants of the meal traverse the first third of the colon in 6 h, the second third in 9 h, and reach the terminal part of the colon (the sigmoid colon) in 12 h. From the sigmoid colon to the anus, transport is much slower (Clinical Box 27–5). When small colored beads are fed with a meal, an average of 70% of them are recovered in the stool in 72 h, but total recovery requires more than a week. Transit time, pressure fluctuations, and changes in pH in the gastrointestinal tract can be observed by monitoring the progress of a small pill that contains sensors and a miniature radio transmitter.
++
CLINICAL BOX 27–5 Constipation
Constipation refers to a pathologic decrease in bowel movements. It was previously considered to reflect changes in motility, but the recent success of a drug designed to enhance chloride secretion for the treatment of chronic constipation suggests alterations in the balance between secretion and absorption in the colon could also contribute to symptom generation. Patients with persistent constipation, and particularly those with a recent change in bowel habits, should be examined carefully to rule out underlying organic disease. However, many normal humans defecate only once every 2–3 days, even though others defecate once a day and some as often as three times a day. Furthermore, the only symptoms caused by constipation are slight anorexia and mild abdominal discomfort and distension. These symptoms are not due to absorption of “toxic substances,” because they are promptly relieved by evacuating the rectum and can be reproduced by distending the rectum with inert material. In western societies, the amount of misinformation and undue apprehension about constipation probably exceeds that about any other health topic. Symptoms other than those described above that are attributed by the lay public to constipation are due to anxiety or other causes.
THERAPEUTIC HIGHLIGHTS Most cases of constipation are relieved by a change in the diet to include more fiber, or the use of laxatives that retain fluid in the colon, thereby increasing the bulk of the stool and promoting reflexes that lead to evacuation. As noted above, lubiprostone has recently joined the armamentarium for the treatment of constipation, and is assumed to act by enhancing chloride, and thus water, secretion into the colon thereby increasing the fluidity of the colonic contents.
++
Distension of the rectum with feces initiates reflex contractions of its musculature and the desire to defecate. In humans, the sympathetic nerve supply to the internal (involuntary) anal sphincter is excitatory, whereas the parasympathetic supply is inhibitory. This sphincter relaxes when the rectum is distended. The nerve supply to the external anal sphincter, a skeletal muscle, comes from the pudendal nerve. The sphincter is maintained in a state of tonic contraction, and moderate distension of the rectum increases the force of its contraction (Figure 27–9). The urge to defecate first occurs when rectal pressure increases to about 18 mm Hg. When this pressure reaches 55 mm Hg, the external as well as the internal sphincter relaxes and there is reflex expulsion of the contents of the rectum. This is why reflex evacuation of the rectum can occur even in the setting of spinal injury.
++
++
Before the pressure that relaxes the external anal sphincter is reached, voluntary defecation can be initiated by straining. Normally, the angle between the anus and the rectum is approximately 90° (Figure 27–10), and this plus contraction of the puborectalis muscle inhibits defecation. With straining, the abdominal muscles contract, the pelvic floor is lowered 1–3 cm, and the puborectalis muscle relaxes. The anorectal angle is reduced to 15° or less. This is combined with relaxation of the external anal sphincter and defecation occurs. Defecation is therefore a spinal reflex that can be voluntarily inhibited by keeping the external sphincter contracted or facilitated by relaxing the sphincter and contracting the abdominal muscles.
++
++
Distension of the stomach by food initiates contractions of the rectum and, frequently, a desire to defecate. The response is called the gastrocolic reflex, and may be amplified by an action of gastrin on the colon. Because of the response, defecation after meals is the rule in children. In adults, habit and cultural factors play a large role in determining when defecation occurs.