++
It is pertinent also to discuss briefly the types of disease states where endocrine physiology can become deranged. Additional details of these disease states can be found in ensuing chapters.
++
Deficiencies of particular hormones are most commonly seen in the setting where there is destruction of the glandular structure responsible for their production, often as a result of inappropriate autoimmune attack. For example, in type 1 diabetes mellitus, pancreatic β cells are destroyed leading to an inability to synthesize insulin, often from a very young age. Similarly, hormonal deficiencies arise when there are inherited mutations in the factors responsible for their release or in the receptors for these releasing factors. Defects in the enzymatic machinery needed for hormone production, or a lack of appropriate precursors (eg, iodine deficiency leads to hypothyroidism) will also reduce the amount of the relevant hormone available for bodily requirements.
++
CLINICAL BOX 16–2 Approach to the Patient with Suspected Endocrine Disease
Unlike many of the disorders of individual organ systems considered elsewhere in this volume, the symptoms of endocrine disease may be protean because of the number of body systems that are impacted by hormonal action. Further, many endocrine glands are relatively inaccessible to direct physical examination. Endocrine disorders must therefore be diagnosed on the basis of the symptoms they produce in concert with appropriate biochemical testing. Radioimmunoassays for specific hormones remain the mainstay of diagnostic endocrinolology and can be used to establish steady state concentrations as well as dynamic changes of the hormone in question (the latter requiring repeated blood sampling over time). In addition, the principles of feedback regulation of hormone synthesis and release may allow the clinician to pinpoint the likely locus of any defect by comparing the levels of hormones in the same axis. For example, if testosterone levels are low but those of luteinizing hormone (LH) are high, this suggests that the testes are unable to respond to LH. Conversely, if both testosterone and LH are low, the problem is more likely to be at the level of the pituitary. Synthetic hormones can also be administered exogenously to test whether increased basal levels of a given hormone can be suppressed, or abnormally low levels can be stimulated by a relevant upstream agent. An example of applying this type of reasoning to the evaluation of suspected hypothyroidism is provided in Figure 16–5.
THERAPEUTIC HIGHLIGHTS The appropriate treatment of endocrine disorders depends on their underlying basis. For example, if a particular hormone or its releasing factor is deficient, hormone replacement therapy is often indicated to ameliorate symptoms as well as long-term negative outcomes (Figure 16–5).
++
++
Many of the consequences of hormone deficiency can by reproduced in disease states where adequate levels of a given hormone are synthesized and released, but the target tissues become resistant to the hormone’s effects. Indeed, there is often overproduction of the implicated hormone in these conditions because the feedback loops that normally serve to shut off hormone synthesis and/or secretion are similarly desensitized. Mutations in hormone receptors (especially nuclear receptors) may result in heritable syndromes of hormone resistance. These syndromes, while relatively rare, usually exhibit severe outcomes, and have provided insights into the basic cell biology of hormone signaling. Functional hormone resistance that develops over time is also seen. Resistance arises from a relative failure of receptor signaling to couple efficiently to downstream intracellular effector pathways that normally mediate the effects of the hormone. The most common example of this is seen in type 2 diabetes mellitus. Target tissues for insulin gradually become more and more resistant to its actions, secondary to reduced activation of phosphatidylinositol 3-kinase and other intracellular signaling pathways. A key factor precipitating this outcome is obesity. In addition, because of excessive insulin secretion, pancreatic β cells become “exhausted” and may eventually fail, necessitating treatment with exogenous insulin. An important therapeutic goal, therefore, is to minimize progression to β cell exhaustion before irreversible insulin resistance sets in, with diet, exercise, and treatment with so-called insulin sensitizers (such as metformin and rosiglitazone).
++
The converse of disorders of hormone deficiency or resistance is seen in diseases associated with hormone excess or overstimulation of hormone receptors (or both). A wide variety of endocrine tumors may produce hormones in an excessive and uncontrolled manner. Note that the secretion of hormones from tumor cells may not be subject to the same types of feedback regulation that are seen for the normal source of that hormone. In the setting of an endocrine tumor, exaggerated effects of the hormone are seen. For example, acromegaly, or gigantism, occurs in patients afflicted with an adenoma derived from pituitary somatotropes that secretes excessive quantities of growth hormone (see Chapter 18). In addition, other endocrine tumors may secrete hormones other than those characteristic of the cell type or tissue from which they are originally derived. When hormone production is increased in all of these cases, there usually will also be downregulation of upstream releasing factors due to the triggering of negative feedback loops.
++
Disorders of hormone excess can also be mimicked by antibodies that bind to, and activate, the receptor for the hormone. A classic example of such a condition is Graves disease, where susceptible individuals generate thyroid-stimulating immunoglobulins (TSIs) that bind to the receptor for TSH. This causes a conformational change that elicits receptor activation, and thus secretion of thyroid hormone in the absence of a physiologic trigger for this event. Diseases associated with hormone excess can also occur in a heritable manner secondary to activating mutations of hormone releasing factor receptors or their downstream targets. As seen for endocrine tumors, these pathophysiologic triggers of excessive hormone release are of course not subject to dampening by negative feedback loops.