++
Smooth muscle is distinguished anatomically from skeletal and cardiac muscle because it lacks visible cross-striations. Actin and myosin-II are present, and they slide on each other to produce contraction. However, they are not arranged in regular arrays, as in skeletal and cardiac muscle, and so the striations are absent. Instead of Z lines, there are dense bodies in the cytoplasm and attached to the cell membrane, and these are bound by α-actinin to actin filaments. Smooth muscle also contains tropomyosin, but troponin appears to be absent. The isoforms of actin and myosin differ from those in skeletal muscle. A sarcoplasmic reticulum is present, but it is less extensive than those observed in skeletal or cardiac muscle. In general, smooth muscles contain few mitochondria and depend, to a large extent, on glycolysis for their metabolic needs.
++
There is considerable variation in the structure and function of smooth muscle in different parts of the body. In general, smooth muscle can be divided into unitary (or visceral) smooth muscle and multiunit smooth muscle. Unitary smooth muscle occurs in large sheets, has many low-resistance gap junctional connections between individual muscle cells, and functions in a syncytial fashion. Unitary smooth muscle is found primarily in the walls of hollow viscera. The musculature of the intestine, the uterus, and the ureters are examples. Multiunit smooth muscle is made up of individual units with few (or no) gap junctional bridges. It is found in structures such as the iris of the eye, in which fine, graded contractions occur. It is not under voluntary control, but it has many functional similarities to skeletal muscle. Each multiunit smooth muscle cell has en passant endings of nerve fibers, but in unitary smooth muscle there are en passant junctions on fewer cells, with excitation spreading to other cells by gap junctions. In addition, these cells respond to hormones and other circulating substances. Blood vessels have both unitary and multiunit smooth muscle in their walls.
+++
ELECTRICAL & MECHANICAL ACTIVITY
++
Unitary smooth muscle is characterized by the instability of its membrane potential and by the fact that it shows continuous, irregular contractions that are independent of its nerve supply. This maintained state of partial contraction is called tonus, or tone. The membrane potential has no true “resting” value, being relatively low when the tissue is active and higher when it is inhibited, but in periods of relative quiescence values for resting potential are on the order of –20 to –65 mV. Smooth muscle cells can display divergent electrical activity (eg, Figure 5–18). There are slow sine wave-like fluctuations a few millivolts in magnitude and spikes that sometimes overshoot the zero potential line and sometimes do not. In many tissues, the spikes have a duration of about 50 ms, whereas in some tissues the action potentials have a prolonged plateau during repolarization, like the action potentials in cardiac muscle. As in the other muscle types, there are significant contributions of K+, Na+, and Ca2+ channels and Na, K ATPase to this electrical activity. However, discussion of contributions to individual smooth muscle types is beyond the scope of this text.
++
++
Because of the continuous activity, it is difficult to study the relation between the electrical and mechanical events in unitary smooth muscle, but in some relatively inactive preparations, a single spike can be generated. In such preparations, the excitation–contraction coupling in unitary smooth muscle can occur with as much as a 500 ms delay. Thus, it is a very slow process compared with that in skeletal and cardiac muscle, in which the time from initial depolarization to initiation of contraction is less than 10 ms. Unlike unitary smooth muscle, multiunit smooth muscle is nonsyncytial and contractions do not spread widely through it. Because of this, the contractions of multiunit smooth muscle are more discrete, fine, and localized than those of unitary smooth muscle.
+++
MOLECULAR BASIS OF CONTRACTION
++
As in skeletal and cardiac muscle, Ca2+ plays a prominent role in the initiation of contraction of smooth muscle. However, the source of Ca2+ increase can be quite different in unitary smooth muscle. Depending on the activating stimulus, Ca2+ increase can be due to influx through voltage- or ligand-gated plasma membrane channels, efflux from intracellular stores through the RyR, efflux from intracellular stores through the inositol trisphosphate receptor (IP3R) Ca2+ channel, or via a combination of these channels. In addition, the lack of troponin in smooth muscle prevents Ca2+ activation via troponin binding. Rather, myosin in smooth muscle must be phosphorylated for activation of the myosin ATPase. Phosphorylation and dephosphorylation of myosin also occur in skeletal muscle, but phosphorylation is not necessary for activation of the ATPase. In smooth muscle, Ca2+ binds to calmodulin, and the resulting complex activates calmodulin-dependent myosin light chain kinase. This enzyme catalyzes the phosphorylation of the myosin light chain on serine at position 19, increasing its ATPase activity.
++
Myosin is dephosphorylated by myosin light chain phosphatase in the cell. However, dephosphorylation of myosin light chain kinase does not necessarily lead to relaxation of the smooth muscle. Various mechanisms are involved. One appears to be a latch bridge mechanism by which myosin cross-bridges remain attached to actin for some time after the cytoplasmic Ca2+ concentration falls. This produces sustained contraction with little expenditure of energy, which is especially important in vascular smooth muscle. Relaxation of the muscle presumably occurs when the Ca2+-calmodulin complex finally dissociates or when some other mechanism comes into play. The events leading to contraction and relaxation of unitary smooth muscle are summarized in Figure 5–19. The events in multiunit smooth muscle are generally similar.
++
++
Unitary smooth muscle is unique in that, unlike other types of muscle, it contracts when stretched in the absence of any extrinsic innervation. Stretch is followed by a decline in membrane potential, an increase in the frequency of spikes, and a general increase in tone.
++
If epinephrine or norepinephrine is added to a preparation of intestinal smooth muscle arranged for recording of intracellular potentials in vitro, the membrane potential usually becomes larger, the spikes decrease in frequency, and the muscle relaxes (Figure 5–20). Norepinephrine is the chemical mediator released at noradrenergic nerve endings, and stimulation of the noradrenergic nerves to the preparation produces inhibitory potentials. Acetylcholine has an effect opposite to that of norepinephrine on the membrane potential and contractile activity of intestinal smooth muscle. If acetylcholine is added to the fluid bathing a smooth muscle preparation in vitro, the membrane potential decreases and the spikes become more frequent. The muscle becomes more active, with an increase in tonic tension and the number of rhythmic contractions. The effect is mediated by phospholipase C, which produces IP3 and allows for Ca2+ release through IP3 receptors. In the intact animal, stimulation of cholinergic nerves causes release of acetylcholine, excitatory potentials, and increased intestinal contractions.
++
++
Like unitary smooth muscle, multiunit smooth muscle is very sensitive to circulating chemical substances and is normally activated by chemical mediators (acetylcholine and norepinephrine) released at the endings of its motor nerves. Norepinephrine in particular tends to persist in the muscle and to cause repeated firing of the muscle after a single stimulus rather than a single action potential. Therefore, the contractile response produced is usually an irregular tetanus rather than a single twitch. When a single twitch response is obtained, it resembles the twitch contraction of skeletal muscle except that its duration is 10 times long.
++
CLINICAL BOX 5–7 Common Drugs That Act on Smooth Muscle
Overexcitation of smooth muscle in the airways, such as that observed during an asthma attack, can lead to bronchoconstriction. Inhalers that deliver drugs to the conducting airway are commonly used to offset this smooth muscle bronchoconstriction, as well as other symptoms in the asthmatic airways. The rapid effects of drugs in inhalers are related to smooth muscle relaxation. Rapid response inhaler drugs (eg, ventolin, albuterol, sambuterol) frequently target β-adrenergic receptors in the airway smooth muscle to elicit a relaxation. Although these β-adrenergic receptor agonists targeting the smooth muscle do not treat all symptoms associated with asthma (eg, inflammation and increased mucus), they act rapidly and frequently allow for sufficient opening of the conducting airway to restore airflow, and thus allow for other treatments to reduce airway obstruction.
Smooth muscle is also a target for drugs developed to increase blood flow. As discussed in the text, NO is a natural signaling molecule that relaxes smooth muscle by raising cyclic guanosine monophosphate (cGMP). This signaling pathway is naturally downregulated by the action of phosphodiesterase (PDE), which transforms cGMP into a nonsignaling form, GMP. The drugs sildenafil, tadalafil, and vardenafil are all specific inhibitors of PDE V, an isoform found mainly in the smooth muscle in the corpus cavernosum of the penis (see Chapters 25 and 32). Thus, oral administration of these drugs can block the action of PDE V, increasing blood flow in a very limited region in the body and offsetting erectile dysfunction.
++
In addition to cellular mechanisms that increase contraction of smooth muscle, there are cellular mechanisms that lead to its relaxation (Clinical Box 5–7). This is especially important in smooth muscle that surrounds the blood vessels to increase blood flow. It was long known that endothelial cells that line the inside of blood cells could release a substance that relaxed smooth muscle (endothelial-derived relaxing factor, EDRF). EDRF was later identified as the gaseous second messenger molecule, nitric oxide (NO). NO produced in endothelial cells is free to diffuse into the smooth muscle for its effects. Once in muscle, NO directly activates a soluble guanylyl cyclase to produce another second messenger molecule, cyclic guanosine monophosphate (cGMP). This molecule can activate cGMP-specific protein kinases that can affect ion channels, Ca2+ homeostasis, or phosphatases, or all of those mentioned, leading to smooth muscle relaxation (see Chapters 7 and 32).
+++
FUNCTION OF THE NERVE SUPPLY TO SMOOTH MUSCLE
++
The effects of acetylcholine and norepinephrine on unitary smooth muscle serve to emphasize two of its important properties: (1) its spontaneous activity in the absence of nervous stimulation and (2) its sensitivity to chemical agents released from nerves locally or brought to it in the circulation. In mammals, unitary muscle usually has a dual nerve supply from the two divisions of the autonomic nervous system. The function of the nerve supply is not to initiate activity in the muscle but rather to modify it. Stimulation of one division of the autonomic nervous system usually increases smooth muscle activity, whereas stimulation of the other decreases it. In some organs, noradrenergic stimulation increases and cholinergic stimulation decreases smooth muscle activity; in others, the reverse is true.
+++
FORCE GENERATION & PLASTICITY OF SMOOTH MUSCLE
++
Smooth muscle displays a unique economy when compared to skeletal muscle. Despite approximately 20% of the myosin content and a 100-fold difference in ATP use when compared with skeletal muscle, they can generate similar force per cross-sectional area. One of the tradeoffs of obtaining force under these conditions is the noticeably slower contractions when compared to skeletal muscle. There are several known reasons for these noticeable changes, including unique isoforms of myosin and contractile-related proteins expressed in smooth muscle and their distinct regulation (discussed above). The unique architecture of the smooth cell and its coordinated units also likely contribute to these changes.
++
Another special characteristic of smooth muscle is the variability of the tension it exerts at any given length. If a unitary smooth muscle is stretched, it first exerts increased tension. However, if the muscle is held at the greater length after stretching, the tension gradually decreases. Sometimes the tension falls to or below the level exerted before the muscle was stretched. It is consequently impossible to correlate length and developed tension accurately, and no resting length can be assigned. In some ways, therefore, smooth muscle behaves more like a viscous mass than a rigidly structured tissue, and it is this property that is referred to as the plasticity of smooth muscle.
++
The consequences of plasticity can be demonstrated in humans. For example, the tension exerted by the smooth muscle walls of the bladder can be measured at different degrees of distension as fluid is infused into the bladder via a catheter. Initially, tension increases relatively little as volume is increased because of the plasticity of the bladder wall. However, a point is eventually reached at which the bladder contracts forcefully (see Chapter 37).