++
Neutropenia refers to an absolute blood neutrophil count (total leukocyte count per microliter × percent of neutrophils) that is less than 2 SD below the normal mean of the population. The terms leukopenia, a reduced total white blood cell count, and granulocytopenia, reduced numbers of blood granulocytes (neutrophils, eosinophils, and basophils), sometimes are imprecisely used as synonyms for neutropenia. Agranulocytosis literally means a complete absence of blood granulocytes, but this term often is used to indicate severe neutropenia, that is, counts less than 0.5 × 109/L (0.5 × 103/μL).
++
The concentration of neutrophils in blood is influenced by age, activity, and genetic and environmental factors (Chap. 2). For children from 1 month to 10 years old, neutropenia is defined as a blood neutrophil count less than 1.5 × 109/L. For individuals older than age 10 years, neutropenia is defined as a count less than approximately 1.8 × 109/L (see Chap. 7 regarding levels in newborns). Healthy older persons have the same blood neutrophil counts as younger individuals (Chap. 9). Some racial and ethnic groups, such as Africans, African Americans, and Yemenite Jews, have lower mean neutrophil counts than persons of Asian or European ancestry (see Chap. 2, Table 2–2). The mean differences in neutrophils are modest and have no recognized health consequences.1,2
++
Severe neutropenia is a predisposing factor for infections. The organisms normally are found on the skin, in the nasopharynx, and as part of the intestinal flora. The risk of infections is inversely related to the severity of the neutropenia (Chap. 24). Individuals with neutrophil counts of 1.0 to 1.8 × 109/L are at little risk of infection. In general, neutrophil counts between 0.5 and 1.0 × 109/L are associated with only slight risk of infection unless other contributing factors are present. Individuals with neutrophil counts less than 0.5 × 109/L are at substantially greater risk, but the frequency of infections varies considerably, depending on the cause and duration of neutropenia. Severe acute neutropenia (i.e., developing over a few hours or days) usually is associated with greater risk of infection than severe chronic neutropenia (usually present for months or years). Neutropenia resulting from disorders of production that affect early hematopoietic precursor cells (e.g., aplastic anemia, severe congenital neutropenia) leads to greater susceptibility to infections than do conditions with adequate neutrophil precursors in the marrow and neutropenia attributed to accelerated turnover in the blood (e.g., rheumatoid arthritis, Felty syndrome, autoimmune neutropenia). For patients made severely neutropenic by cancer chemotherapy, the risk is greater when the neutrophils are decreasing than with similar counts when neutrophils are increasing. Neutropenia accompanied by monocytopenia, lymphocytopenia, or hypogammaglobulinemia is more serious than isolated neutropenia. Other factors, such as the integrity of the skin and mucous membranes, the vascular supply to tissues, and the nutritional status of the patient, also influence the risk of infections.
+++
PATHOPHYSIOLOGIC MECHANISMS
++
Neutropenia occurs because of (1) hypoplastic neutropoiesis, (2) ineffective neutropoiesis (resulting from exaggerated apoptosis of late precursors), (3) accelerated removal or utilization of circulating neutrophils, (4) shifts of cells from the circulating to the marginal blood pools, or (5) a combination of these mechanisms (Fig. 65–1). Some production disorders are caused by intrinsic abnormalities of hematopoietic progenitor cells (Chap. 83). Other disorders in cell production are caused by extrinsic factors, including changes in the marrow environment, such as tumor infiltration, fibrosis, or irradiation (Chap. 45). Myelotoxic chemotherapeutic drugs commonly cause neutropenia because of the high proliferative activity of neutrophil precursors in the marrow and short half-life (4 to 8 hours) of neutrophils in the blood. Production of neutrophils is defined as ineffective when, under a steady state of hematopoiesis, a relative abundance of early neutrophil precursors, a paucity of late-maturing cells, and neutropenia occur. This condition has often been referred to as “maturation arrest,” but it is almost always explained by either the apoptotic loss of late precursors in the marrow as an intrinsic defect in cell maturation or rapid release of segmented neutrophils because of exaggerated tissue demands.
++
++
Accelerated neutrophil utilization occurs with autoimmune neutropenia and acute bacterial infections. When rapid neutrophil utilization and impaired production occur, acute severe neutropenia often develops. The condition is illustrated by the abrupt and sustained fall in neutrophils when an alcoholic patient develops pneumococcal pneumonia. Alcohol suppresses the marrow, and the infection consumes the available neutrophil supply. After myelotoxic cancer chemotherapy, the abrupt fall in blood neutrophils at the onset of infections reflects a similar mechanism: high demand and limited supply. With idiosyncratic drug-induced neutropenia, the counts may fall abruptly because both blood and marrow cells are simultaneously damaged. Acute neutropenia that develops because of a shift of blood neutrophils from the circulating to the marginal blood pools, that is, increased margination (e.g., after injection of endotoxin, with exposure of blood to dialysis membranes, or after intravenous granulocyte colony-stimulating factor [G-CSF] or granulocyte-macrophage colony-stimulating factor [GM-CSF]) usually is a transient event. The marginated cells reenter the circulating pool, and the blood supply of neutrophils is rapidly restored from the large reserves of marrow neutrophils entering the blood.
+++
Cellular and Molecular Mechanisms of Neutropenia
++
Our understanding of the mechanisms of neutropenia at the cellular and molecular levels is increasing rapidly because of advances in molecular genetics and cell biology. For many inherited forms of neutropenia, the genetic mutations causing these diseases are now known, and the mutant protein products have been identified. Some mutations and acquired defects shorten the survival of the precursor cells, that is, they accelerate apoptosis. This form of cell loss now is thought to be the mechanism for “maturation arrest” in several diseases. Examples of increased apoptosis causing neutropenia include vitamin B12 or transcobalamin deficiency,3 clonal cytopenias (myelodysplasia),4 myelokathexis,5 congenital and cyclic neutropenia,6,7 and the Shwachman-Diamond syndrome.8 Neutrophils also can be depleted from the blood and the marrow as a result of extrinsic factors such as antineutrophil antibodies and toxic cytokines generated by other cells.9,10 Some disorders that cause neutropenia also perturb neutrophil function, such as glycogen storage disease type 1b,11 Chédiak-Higashi syndrome,12 and HIV infection.13 Susceptibility to infection in these conditions relates to the combination of defects.
+++
CAUSES OF NEUTROPENIA
++
Causes of neutropenia are classified physiologically as disorders of production, distribution, or turnover. Not every condition fits neatly into this scheme, but it provides a framework for understanding these diverse disorders.
+++
Disorders of Production
++
Cytotoxic drugs given for cancer chemotherapy and as immunosuppressive agents regularly cause neutropenia by decreasing cell production (Chap. 22). These drugs now are probably the most frequent cause of neutropenia in the United States. Neutropenia as a result of impaired production is a common feature of several diseases affecting hematopoietic stem cells, such as acute leukemia (Chaps. 88 and 91), the myelodysplastic syndromes (Chap. 87), and aplastic anemia (Chap. 35). The selective causes of impaired production, progressing from disorders of early precursors to disorders presumed to involve defective maturation (ineffective production), are described briefly as follows.
+++
Congenital Neutropenias (Kostmann Syndrome and Related Disorders
++
In 1956, Kostmann described congenital neutropenia (agranulocytosis) as an autosomal recessive disease occurring in an extended family in northern Sweden.14 Phenotypically similar sporadic cases and families with autosomal dominant congenital neutropenia have been reported.15,16 In severe congenital neutropenia, symptoms and signs of otitis, gingivitis, pneumonia, enteritis, peritonitis, and bacteremia usually begin in the first months of life. At diagnosis, the neutrophil count usually is less than 0.2 × 109/L.17 Monocytosis, mild anemia, thrombocytosis, and splenomegaly frequently are present. Characteristically, the marrow shows early neutrophil precursors (myeloblasts, promyelocytes) but few or no myelocytes or mature neutrophils (Fig. 65–2). Marrow eosinophilia is common. In vitro marrow culture studies show poor growth in response to various growth factors and with reduced numbers of marrow neutrophil and monocyte progenitor cell colonies.18 Usually blood lymphocyte numbers are normal, immunoglobulin levels are normal or increased, and lymphocyte functions are intact.
++
++
The majority of patients with sporadic or autosomal dominant severe congenital neutropenia have heterozygous mutations of the gene for neutrophil elastase (also called ELANE). Its product is a protease found normally in the neutrophil’s primary granules and lead to the induction of the unfolded protein response in the endoplasmatic reticulum.15,19,20 A variety of mutations in exons 2 through 5 as well as in introns III and IV are the cause of this disease.20,21,22,23 In the original Kostmann family, and some other families with autosomal recessive disease, neutropenia is caused by mutations in the HAX-1 gene.24 HAX-1 is a mitochondrial protein, and the mutations lead to accelerated apoptosis of myeloid cells, as well as neurologic abnormalities. In addition, mutations in HAX-1 lead to defective G-CSF receptor signaling via HCLS1 and LEF-1.25 Mutations in the gene for glucose-6-phosphatase catalytic subunit 3 (G6PC3) also cause severe neutropenia as a result of apoptosis of neutrophil precursors, as well as congenital cardiac and urogenital abnormalities.26 Additional autosomal-dominant, autosomal-recessive, X-linked, and sporadic forms have been described, with mutations in other genes, including GFI1,27 WAS,28 p14,29 TAZ,30 JAGN1,31 TCIRG1,32 and many others, although the genetic causes in many patients with severe congenital neutropenia remain unidentified.
++
Mutations in the gene for the receptor for G-CSF also occur in patients with severe congenital neutropenia33,34; however, most of these receptor mutations have caused truncations of the distal portion of the cytoplasmic domain of the receptor, an abnormality associated with altered sensitivity to G-CSF. G-CSF receptor mutations are part of the evolution to myelodysplasia or acute myelogenous leukemia and are not the primary cause of this neutropenia. An exception may be a patient identified with a mutation in the external domain of the G-CSF receptor who responded to treatment with G-CSF and glucocorticoids and has not developed leukemia over several years of observation.35 There are rare cases of biallelic mutations within the extracellular domain of the G-CSF receptor which lead to nonresponse to treatment with G-CSF.36
++
G-CSF is a very effective therapy for all of the recognized subtypes of severe congenital neutropenia, increasing the neutrophil counts and reducing recurrent fevers and infections.37 G-CSF acts to increase the neutrophil counts by enhancing expression of a critical transcription factor for granulopoiesis, C/EBPβ (CCAAT/enhancer binding protein β), and the “emergency” pathway of myelopoiesis (as during steady state C/EBPα is not functional).38 Approximately 5 percent of patients do not respond to G-CSF. Hematopoietic transplantation is the only other therapy known to improve the clinical course for these patients.39,40 Untreated patients and patients treated with G-CSF are at risk for developing acute myelogenous leukemia. The risk increases with time on treatment with G-CSF, particularly in poorly responsive patients.41 A novel molecular pathway of leukemogenesis was recently identified: mutations in the hematopoietic cytokine receptor (G-CSFR) in combination with the second mutations in the downstream hematopoietic transcription factor (RUNX1), which could be used as a marker for identifying severe congenital neutropenia patients with a high risk of progressing to leukemia or myelodysplastic syndrome.42
+++
Congenital Immunodeficiency Diseases
++
Neutropenia is a feature of the congenital immunodeficiency diseases and a contributing factor to their susceptibility to infections (Chap. 80). In most of these conditions, neutropenia is attributed to a production disorder based largely on histologic examination of the marrow. In X-linked agammaglobulinemia, which is attributed to defective B-cell development and a mutation in a cytoplasmic (Bruton) tyrosine kinase (BTK), severe neutropenia is present in approximately 25 percent of patients.43 Children with common variable immunodeficiency often have neutropenia associated with thrombocytopenia and hemolytic anemia.43 Neutropenia occurs in almost half of patients with the X-linked hyperimmunoglobulin-M syndrome, a disorder caused by a mutation in the gene encoding the CD40 ligand.44 In severe combined immunodeficiency, neutropenia is not always present. The neutropenia varies over time in individual patients. Neutropenia is particularly prominent in the rare immunodeficiency state, reticular dysgenesis.43 Neutropenia is a less-common feature of adenosine deaminase deficiency, the T−B+, T−B−, Wiskott-Aldrich, and Omenn syndromes.43,45,46 Neutropenia also occurs on an autoimmune basis in some cases of the Wiskott-Aldrich syndrome.34,46 Mutations in the genes for growth factor independent protein-1 (GFI 1) can also cause neutropenia.47
++
G-CSF therapy is effective in most patients with neutropenia associated with these immunodeficiency syndromes.
+++
Cartilage Hair Hypoplasia Syndrome
++
This rare autosomal recessive disorder is characterized by short-limbed dwarfism, hyperextensible digits, very fine hair, neutropenia, lymphopenia, and recurrent infections.43 The genetic locus is at 9p13 and affects a gene coding for an endoribonuclease. The degree of neutropenia is variable, with blood counts ranging from 0.1 to 2.0 × 109/L. An accompanying defect in T-cell proliferation results from an abnormality in the transition from the G0 to the G1 phase of the mitotic cycle. Patients have frequent bacterial and viral respiratory infections. Hematopoietic stem cell transplantation can correct the neutropenia and immune deficiency.48,49
+++
Shwachman-Diamond Syndrome
++
This autosomal recessive disorder combines short stature, pancreatic exocrine deficiency, and marrow failure with neutropenia beginning early in the neonatal period.50,51,52,53 Thrombocytopenia and anemia may be severe (Chap. 35). The chromosomal locus of the mutation is at 7qll, and the mutation affects the SBDS gene.50 The mutation causes a proliferative defect and increased apoptosis of early myeloid progenitor cells.51 A chemotactic defect also occurs in mature neutrophils.52 The patients are malnourished, but the neutropenia is not corrected by improving the patients’ nutritional status. Treatment with G-CSF raises blood neutrophil levels, and hematopoietic stem cell transplantation corrects the hematologic abnormalities.53 Without transplantation, the risk of evolution to myelodysplastic syndrome and acute myelogenous leukemia is 20 percent or greater.53
+++
Diamond-Blackfan Syndrome
++
Neutropenia is a rare complication of hereditary hypoplastic anemia.54 Other features include congenital anomalies of the head and upper limbs. Two genetic loci have been identified: 19q13.2 and 8p23.55,56 The varying severity of neutropenia may reflect genetic heterogeneity among patients with this diagnosis (Chap. 36).
++
This rare autosomal recessive disorder is characterized by pigmentary dilution and variable degrees of cellular immunodeficiency. The syndrome consists of three types. Neutropenia is a feature of type 2 but not types 1 or 3. In type 2, the neutropenia is relatively mild and associated with pancytopenia. These hematologic abnormalities are attributable to a mutation located at 15q21 affecting the RAB27a gene.57 The gene product is a guanosine triphosphatase (GTPase). The mutation also causes abnormal release of granule proteins and hematophagocytosis.58 As in the Chédiak-Higashi syndrome (Chap. 66), type 2 patients may develop an acute phase of uncontrolled lymphocyte and macrophage activation leading rapidly to death.59 Hematopoietic stem cell transplantation can correct the hematologic features. Evolution to myelodysplasia has been reported.60
+++
Chédiak-Higashi Syndrome
++
This rare autosomal recessive disorder is characterized by partial oculocutaneous albinism, giant granules in many cells (including granulocytes, monocytes, and lymphocytes), neutropenia, and recurrent infections (Chap. 66). This syndrome now is attributable to a chromosomal mutation at 1q43 affecting the LYST gene.61 The product of this gene regulates lysosomal trafficking. In Chédiak-Higashi syndrome, the neutropenia usually is mild, and susceptibility to infection is attributed to neutropenia and defective microbicidal activity of the phagocytes.62
+++
Myelokathexis, WHIM, and Related Syndromes
++
Myelokathexis is a rare autosomal dominant or sporadically occurring disorder in which patients have severe neutropenia and lymphocytopenia, with total white cell counts often less than 1.0 × 109/L.63 WHIM syndrome, characterized by warts, hypogammaglobulinemia, infections, and myelokathexis, now is attributable to a mutation in the gene encoding the receptor for the CXC chemokine CXCL12 (previously termed stromal cell-derived factor-1), termed CXCR-4.64,65 The ligand–receptor pair CXCL-12/CXCR-4 is important for regulating the trafficking of all type of blood and marrow cells, including hematopoietic stem cells, from the marrow to the blood and tissues. In these syndromes, the marrow usually shows abundant precursors and developing neutrophils. Neutrophils in the marrow and the blood show hypersegmentation with pyknotic nuclei and cytoplasmic vacuoles. These morphologic changes and some molecular studies suggest cell loss in the marrow and blood caused by accelerated apoptosis. Favorable responses to G-CSF and GM-CSF occur, as does evolution to the myelodysplastic syndrome. A myelokathexis-like variant of myelodysplastic syndrome has been reported.66
++
Cohen syndrome is another rare cause of neutropenia. Mental retardation, postnatal microcephaly, facial dysmorphism, pigmentary retinopathy, myopia, and intermittent neutropenia are characteristic features. Patients with Cohen syndrome of diverse origins have mutations in the COH1 gene.67 Current studies suggest that COH1 plays a role in vesicle-mediated sorting and transport of proteins within many types of cells.
+++
Glycogen Storage Diseases
++
These autosomal recessive disorders are characterized by hypoglycemia, hepatosplenomegaly, seizures, and failure to thrive in infants. Only type 1b is associated with neutropenia.68 The genetic defect in type 1b maps to chromosome 11q23 and is attributed to a defect in an intracellular transport protein for glucose.69 The marrow appears normal despite severely reduced blood neutrophils. The neutrophils have a reduced oxidative burst when stimulated and defective chemotaxis.70,71 Treatment with G-CSF is effective for correcting the neutropenia and improving the associated inflammatory bowel disease, but has been associated with evolution to acute myelogenous leukemia.72
++
Cyclic neutropenia is an autosomal dominant or sporadically occurring disease characterized by regularly recurring episodes of severe neutropenia, usually every 21 days.73 Regular oscillations of other white cells, reticulocytes, and platelets are sometimes observed. Cyclic neutropenia now is attributable to mutations in the gene for neutrophil elastase (ELANE) at locus 19q3. Most mutations in the ELANE gene are in the regions of exons 4 and 5, but there are also mutations in exons 2 and 3, as well as in the introns II and IV.74,23 The diagnosis usually is made in the first year of life, especially in the presence of a family history of the condition.75 The neutropenic periods last for 3 to 6 days and often are accompanied by fever, malaise, anorexia, mouth ulcers, and cervical lymphadenopathy. A few cases of acquired cyclic neutropenia in adults, some of whom have an associated clonal proliferation of large granular lymphocytes (Chap. 94), have been reported.76
++
The diagnosis of cyclic neutropenia can be made only by serial differential white cell counts, at least two or three times per week for a minimum of 6 weeks. Sequencing of the gene may be helpful in confirming the diagnosis.77 Most affected children survive to adulthood, with symptoms often milder after puberty. Fatal clostridial bacteremia has been reported in several cases, and careful observation is warranted with each neutropenic period in untreated patients. Treatment with G-CSF is very effective.78 G-CSF does not abolish cycling, but it shortens the neutropenic periods sufficiently to prevent symptoms and infections. In contrast to severe congenital neutropenias, cyclic neutropenia patients have no risk to develop leukemias.
+++
Other Inherited Neutropenia
++
Neutropenia caused by genetic defects of folate, cobalamin, and transcobalamin IIA varieties of congenital disorders lead to disturbed function of methylmalonyl coenzyme A mutase and methionine synthetase, the two cobalamin-requiring enzymes. Each of these disorders causes neutropenia, anemia, and thrombocytopenia as a result of ineffective hematopoiesis (Chap. 41).79,80,81
++
Several disorders, currently with only descriptive names, may be genetically determined forms of neutropenia. These cases often are called familial (benign) neutropenia and probably are autosomal dominant disorders.82,83,84 Some cases of chronic benign neutropenia of childhood (usually a negative family history) may represent new mutations, and patients with chronic idiopathic neutropenia of adulthood may be childhood cases escaping early detection. Until better information is available, these conditions probably are best referred to as “idiopathic neutropenias.”
+++
Acquired Disorders Neutropenia in Neonates of Hypertensive Mothers
++
Hypertensive women often have low-birth-weight infants with low neutrophil counts, attributed to decreased production.84 The neutropenia often is severe with a high risk of infection, particularly during the first few weeks of life. The neutropenia usually resolves within a few weeks. G-CSF elevates the neutrophil count in this form of neonatal neutropenia, but the clinical benefit of treatment remains to be determined.85
+++
Neutropenia Resulting from Nutritional Deficiencies
++
Neutropenia is an early and consistent feature of megaloblastic anemias resulting from vitamin B12 or folate deficiency. When present it usually is accompanied by macrocytic anemia and mild thrombocytopenia (Chap. 41). Copper deficiency can cause neutropenia in patients on total parenteral nutrition, with a history of gastrectomy, and in malnourished children86,87,88 and the bicytopenia or tricytopenias with a marrow showing dysplastic precursors can masquerade as myelodysplastic syndrome.
+++
Neutropenia Resulting from Immune Suppression of Production
++
Pure white cell aplasia is a rare acquired disorder causing severe selective neutropenia. The marrow is devoid or nearly devoid of neutrophils and their precursors.89 Ibuprofen, chlorpropamide, excessive zinc, and various infectious and inflammatory diseases are considered possible causes of this syndrome. Differential diagnosis includes aplastic anemia, myelodysplasia, hairy cell leukemia, and neutropenia associated with the large granular lymphocyte syndrome. Immunosuppressive therapy with antithymocyte globulin, glucocorticoids, and cyclosporine has been used in individual cases.
+++
Chronic Idiopathic Neutropenia in Adults
++
This is a distinct syndrome predominantly affecting young adult women ages 18 to 35 years; the female-to-male ratio is approximately 8:1.90 The medical history (lack of episodes of fever, gingivitis, mouth sores, or other infections) and previous blood counts suggest the condition is acquired in most cases. Erythrocyte, reticulocyte, and platelet counts usually are normal. Mild leukopenia and lymphocytopenia may be present, and the spleen is normal or only minimally enlarged. The patients have no chromosomal abnormalities or other evidence of myelodysplasia.91,92 Marrow examinations show a spectrum of abnormalities, ranging from normal cellularity to selective hypoplasia of the neutrophilic series. In most cases, quantitative marrow studies show the ratio of immature to mature cells is increased, suggesting loss of cells during the maturation process, that is, ineffective granulocytopoiesis.93 Antineutrophil antibodies, autoantibodies, including antinuclear or antimitochondrial antibodies, are absent.94 Chronic idiopathic neutropenia in adults is the result of accelerated apoptosis of neutrophils and their precursors mediated via the Fas ligand or interferon-γ.95 The disease mechanism, that is, activation of the extracellular apoptotic pathway, is similar to the mechanism described for patients with systemic lupus erythematosus.96
++
For most patients, the clinical course can be predicted from the level of blood neutrophils, marrow examination, and prior history of fevers and infections. In general, patients with the lowest levels of blood and marrow neutrophils have the most frequent problems. Long-term observations show, however, that some patients have very low blood neutrophil levels for long periods with few or no infections. Evolution to acute leukemia or aplastic anemia generally does not occur. G-CSF increases neutrophils in most patients and is a useful therapy for patients with recurrent fever and infections.37,97
+++
DISORDERS AFFECTING NEUTROPHIL UTILIZATION AND TURNOVER
+++
Mechanisms of Immune Neutropenia
++
Immune disorders primarily alter the distribution of neutrophils in the blood and accelerate neutrophil turnover. Antineutrophil antibodies cause transfusion reactions, alloimmune neonatal neutropenia, and autoimmune neutropenia. Antigen–antibody complexes, autoantibodies, and cytokine-mediated cellular injury are possible contributors to neutropenia of systemic lupus erythematosus and Felty syndrome. The association of neutropenia with increased numbers of circulating large granular lymphocytes demonstrates that cellular and humoral immune mechanisms can cause neutropenia (Chap. 94).
++
Neutrophils share surface antigens with other tissues including the i-I antigens and human leukocyte antigens (HLAs). They also have some specific antigens, including NA-1, NA-2 (now recognized as isotypes of FcγRIII or CD16), NB-1, NC-1, and NC-9a.98,99,100 A number of other antigens can be identified on neutrophils and neutrophil precursors with monoclonal antibodies. The clearest associations of autoantibodies and neutropenia are with NA-1 and NA-2.101
++
Several tests are available for detecting antineutrophil antibodies, including agglutination and microagglutination, cytotoxicity, direct and indirect immunofluorescence, direct and indirect antiglobulin assays, and tests involving the binding of staphylococcal protein A to immunoglobulins on the surface of cells.101 The agglutination tests are the oldest methods and depend on the propensity of immunoglobulin-coated cells to aggregate. Immunofluorescence tests utilize antihuman γ-globulin tagged with a fluorescein label. These tests can be adapted for quantitative studies with fluorescence-activated cell sorting. Immunofluorescence and staphylococcal protein A–binding tests also can be adapted for examining immunoglobulins bound to single cells, including marrow cells. Direct methods are used to detect the antibodies on the patient’s neutrophils. Indirect methods are used to test the patient’s plasma or serum against panels of normal cells. Use of paraformaldehyde to expose antigens and to preserve the neutrophils for multiple tests has been especially helpful. Appropriate controls are essential for proper interpretation of these studies. Measurements of apoptosis and cytokine-mediated cellular injury are done through research laboratories.
+++
Causes of Immune-Mediated Neutropenia
+++
Alloimmune Neonatal Neutropenia
++
Newborn infants may have neutropenia for a variety of reasons.102 In some cases, the disorder results from transplacental passage of maternal immunoglobulin (Ig) G antibodies that bind to the infant’s neutrophil-specific antigens, usually the FcγRIIIb (HNA1 or CD16b) isotype inherited from the infant’s father.103,104 Other antigens, such as NB1 glycoprotein (NB1 or CD177), HNA-3a(5b), HLA, and unknown antigens, also may be involved.101 Overall, this disorder occurs in approximately 1 in 2000 neonates. The disorder usually lasts 2 to 4 months until the passively acquired antibody is lost.
++
Immune neonatal neutropenia may be severe or relatively mild. It often is not recognized until bacterial infections occur in an otherwise healthy infant. The hematologic picture usually consists of severe neutropenia with normal to increased lymphocytes and normal monocytes, erythrocytes, and platelets. Marrow cellularity is normal or increased, with reduced numbers of mature neutrophils. Alloimmune neonatal neutropenia may be confused with neonatal sepsis because the latter condition also causes severe neutropenia. The diagnosis of alloimmune neutropenia usually is made using neutrophil agglutination or immunofluorescence tests. Treatment should be conservative; antibiotics are used only when necessary. Exchange transfusions to decrease antibody titers or neutrophil transfusions from the patient’s mother are rarely needed.
+++
Autoimmune Neutropenia
++
Neutrophil autoantibodies can decrease neutrophil survival and impair neutrophil production. From a clinical perspective, however, distinguishing autoimmune neutropenia from chronic idiopathic neutropenia often is difficult.105 Patients diagnosed with autoimmune neutropenia have one or more positive tests for antineutrophil antibodies. Their cytopenia is selective; other blood cell counts are normal or near normal. Marrow morphology (Fig. 65–3), colony forming cells, and other tests, including antinuclear antibody tests, are normal. In general, therapy should be conservative and expectant. Intravenous γ-globulin may transiently increase neutrophils, but the therapy is expensive and relatively ineffective. The response to glucocorticoid therapy is unpredictable. Daily or alternate-day G-CSF is effective but should be reserved for patients with recurrent infections. Spontaneous remissions appear to occur much more commonly in children than adults.106,107
++
+++
Systemic Lupus Erythematosus
++
Total leukocyte counts usually are between 2 and 5 × 109/L and neutrophils are less than 1.8 × 109/L in approximately 50 percent of patients with systemic lupus erythematosus.108,110,123 Mild neutropenia often is accompanied by monocytopenia and lymphocytopenia, anemia, thrombocytopenia, and mild degrees of splenomegaly. Marrow cellularity and maturation of cells usually are normal. An increased amount of IgG is present on the surface of neutrophils, and immune complexes are increased within the neutrophils.110 Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediate many of the clinical features of autoimmune diseases, including apoptosis of neutrophils in systemic lupus erythematosus. Glucocorticoids, G-CSF, and GM-CSF elevate neutrophils in most patients with lupus, including patients on immunosuppressive therapies, but the mild neutropenia of these patients usually does not require treatment.110
+++
Rheumatoid Arthritis, Sjögren Syndrome, and Felty Syndrome
++
Leukopenia in association with rheumatoid arthritis is unusual, occurring in less than 3 percent of large series of patients.124 Approximately 1 percent of patients with rheumatoid arthritis develop additional features of Felty syndrome (splenomegaly, deforming rheumatoid arthritis, and leukopenia). Usually, these patients have had active, deforming arthritis and very high rheumatoid factor titers. The neutropenia may be moderate to severe; occasionally patients are seen with no circulating neutrophils. The marrow usually is normal or hypercellular but occasionally is hypocellular. Granulopoiesis usually is marked by sufficient precursors but few band or segmented neutrophils. No clear relationship between spleen size and the neutrophil count is evident.
++
The incidence of bacterial infections in patients with Felty syndrome is low until the neutrophil count is less than 0.2 × 109/L, which has long suggested that neutrophils are made but that their blood kinetics are altered. The altered kinetics may result from high levels of circulating and intracellular immune complexes and IgG on the surface of neutrophils. Cellular injury via Fas-mediated apoptosis is an additional mechanism for cell loss from the marrow and blood.125
++
In Sjögren syndrome, approximately 30 percent of patients have moderate leukopenia. The total leukocyte count usually is 2 to 5 × 109/L with a normal differential count.115,126 Rarely, severe neutropenia occurs in association with recurrent bacterial infections.
++
Therapeutic options for management of neutropenia in these autoimmune disorders include methotrexate, glucocorticoids, G-CSF, GM-CSF, splenectomy, and biologic agents such as rituximab and tocilizumab.116,117 Results with these therapies are unpredictable.122,127 Many specialists prefer weekly methotrexate because of its ease of administration, efficacy, and low toxicity.118 G-CSF or GM-CSF can increase neutrophils but may exacerbate arthralgias.119 Combinations of these agents is another good alternative. Splenectomy is followed by a rapid increase in counts in approximately two-thirds of cases, but approximately two-thirds of patients who respond to splenectomy have recurrence of neutropenia.120 A subset of patients with Felty syndrome have a high blood concentration of large granular lymphocytes with a phenotype characteristic of immature natural killer cells.121 These patients tend to respond poorly to therapies directed toward increasing neutrophil levels but may respond to combinations of methotrexate and G-CSF. Several factors in addition to neutropenia predispose these patients to infections, including monocytopenia, hypocomplementemia, circulating immune complexes, and treatment with glucocorticoids or cytotoxic drugs. In general, treatments to correct neutropenia should be reserved for patients with documented infections.
+++
Other Causes of Neutropenia Associated with Splenomegaly
++
In 1942, Wiseman and Doan122 described a disorder they called primary splenic neutropenia. Since then, a variety of diseases have been recognized as also possibly causing this type of neutropenia, or pseudoneutropenia. Diseases associated with splenomegaly and neutropenia include sarcoidosis, lymphoma, tuberculosis, malaria, kala azar, and Gaucher disease. Usually thrombocytopenia and anemia are present as well. Immune mechanisms in patients with inflammatory diseases are similar to the mechanisms observed in patients with systemic lupus erythematosus and Felty syndrome may be operative. In other patients, sluggish blood flow through the spleen with passive trapping of neutrophils in the congested red pulp probably is the primary cause. For the most part, the neutropenia in these patients is not sufficiently severe to be of clinical consequence. Removal of the spleen to raise the neutrophil count is rarely indicated.
+++
DRUG-INDUCED NEUTROPENIA
++
Idiosyncratic drug reactions cause neutropenia with an estimated annual frequency of three to 12 cases per 1 million population.123,124,125 In 1922, Schultz128 reported six cases of severe sore throat and prostration with absent blood neutrophils, which led rapidly to sepsis and death. A few years later, this syndrome was associated with the coal tar–derived drug aminopyrine.127 Over the past 50 years, scores of other drugs have been recognized to cause this syndrome.
++
Two main types of idiosyncratic drug-induced neutropenia are recognized.128,129 One type is a dose-related toxicity resulting from interference of the drug with protein synthesis or cell replication. This effect often is nonselective. It can involve the hematopoietic stem cell and highly proliferative cells in other organs, such as the epithelial cells of the gastrointestinal tract. Prototype drugs for this type of reaction include phenothiazines, antithyroid drugs, chloramphenicol, and clozapine.130,131 Similar effects on marrow cells may be mediated through free radicals and drug metabolites. Patients receiving multiple drugs and patients having high plasma concentration of drugs as a result of the dose administered, slow metabolism, or renal excretory impairment are more prone to these reactions.130
++
A second type of drug-induced neutropenia may not be dose related. The neutropenia is thought to be allergic or immunologic in origin, similar to drug-induced skin reactions and drug-initiated, antibody-mediated erythrocyte destruction. Many drugs can trigger this form of neutropenia.132 Women are affected more often than men. Older patients are affected more frequently than younger patients. Patients with a history of allergies, including allergies to other drugs, are affected more often than individuals without allergies. Neutropenia may occur at any time, but tends to occur relatively early in the course of treatment with drugs to which the patient has been previously exposed.
++
Our basic understanding of drug-induced neutropenia is limited, partly because of the unpredictable occurrence of cases, the myriad agents involved, and the lack of good animal models for research. Clinical studies suggest the rate of recovery can be roughly predicted from the degree of marrow hypoplasia present when neutropenia is discovered. In patients with sparse marrow neutrophils but normal-appearing precursor cells (promyelocytes and myelocytes), neutrophils reappear in the blood approximately 4 to 7 days after the offending drug is stopped. Often an increase in the blood monocyte count heralds marrow recovery, and an “overshoot” with marked neutrophilia follows. When early precursor cells are severely depleted, recovery may require considerably more time.
++
Symptomatic patients with drug-induced neutropenia usually present with fever, myalgia, and sore throat, but usually no rash or evidence of allergy elsewhere.127 Blood examination shows few or absent neutrophils. Mild lymphopenia may be observed, but other cell counts usually are normal. A high level of suspicion and careful clinical history are critical to identifying the offending drug. Differential diagnosis includes acute viral infections, particularly infectious mononucleosis and infectious hepatitis, and acute bacterial sepsis. If other hematologic abnormalities also are present, acute leukemia and aplastic anemia should be considered. Treatment usually consists of supportive care, including broad-spectrum antibiotics for febrile patients. Hematopoietic growth factors such as G-CSF or GM-CSF may be beneficial, but their use in this setting has not been established in randomized trials.130 An alternative to discontinuing drugs such as clozapine is the addition of G-CSF treatment,127,128,129 although it is usually preferable to discontinue the suspected offending agent.
++
Table 65–1 lists some of the drugs frequently implicated in neutropenia. Given the rapidity of introduction of new agents, consult the manufacturer, a drug information center, or a poison control center when questions arise to learn if a drug can cause neutropenia.
++
+++
NEUTROPENIA WITH INFECTIOUS DISEASES
++
Neutropenia can result from acute or chronic bacterial, viral, parasitic, or rickettsial diseases. Several mechanisms are involved. Certain viral infections, such as infectious mononucleosis, infectious hepatitis, Kawasaki disease, and HIV infection, may cause severe or protracted neutropenia and pancytopenia resulting from infection of hematopoietic precursor cells. Other agents, such as Rickettsia and Bartonella, can infect endothelial cells. These agents may cause leukopenia, neutropenia, thrombocytopenia, and anemia as part of a generalized vasculitic process. Increased neutrophil adherence to altered endothelial cells may occur in dengue, measles, and other viral infections. With severe Gram-negative bacterial infections, neutropenia probably results from increased adherence to the endothelium and increased utilization at the site of infection. Some chronic infections causing splenomegaly, such as tuberculosis, brucellosis, typhoid fever, malaria, and kala azar, probably cause neutropenia because of splenic sequestration and marrow invasion and suppression.
+++
CLINICAL APPROACH TO THE PATIENT PRESENTING WITH NEUTROPENIA
++
Ordinarily, patients with acute onset of severe neutropenia present with fever, sore throat, and evidence of inflammation beneath the skin or mucous membranes. New respiratory or abdominal symptoms should heighten concern of an urgent clinical situation. Immediate investigation should include a careful history with particular attention to drugs. The physical examination should give careful attention to the oropharynx, sinuses, chest, abdomen, bones for evidence of tenderness, and size of the lymph nodes and spleen. Prompt blood counts and microbial cultures, institution of intravenous fluids, antibiotics, and other supportive measures may be lifesaving. In this situation, fever and infections usually result from surface bacteria sensitive to numerous broad-spectrum agents, unless the patient has been treated recently with antibiotics. A complete blood count should be obtained and a marrow examination considered, particularly if the cause of acute neutropenia is not known. The marrow may reveal fibrosis, selective or nonselective hypoplasia of marrow precursors, excessive blasts, or atypical cells. With this information in hand and supportive care started, further diagnostic tests can be considered.
++
Chronic neutropenia often is discovered as a chance finding at a routine examination or during the course of investigation of a patient with recurrent fevers and infections. Determining if the neutropenia is chronic or cyclic and the mean level of blood cell counts when the patient is afebrile and relatively well is useful. Other important hematologic and immunologic data include the absolute monocyte, lymphocyte, eosinophil, and platelet counts; hematocrit or hemoglobin determination; and immunoglobulin levels. Patients with hypergammaglobulinemia usually have chronic and recurrent inflammation; patients with hypogammaglobulinemia and neutropenia usually are very susceptible to recurrent infections. Morphologic examination of the blood and marrow can identify some causes of benign neutropenia in children, the Chédiak-Higashi syndrome, and myelokathexis. The marrow examination is most useful for ruling out leukemia and myelodysplastic disorders and assessing the severity of the marrow defect.
++
In patients with chronic neutropenia, measurement of antinuclear antibodies (ANA) and rheumatoid factor titers and other serologic tests for autoimmune diseases may be useful. Usually, neutropenia associated with these disorders occurs in patients with obvious and severe disease, but occasionally patients are seen with occult splenomegaly, high ANA and rheumatoid factor titers, and a few other symptoms. Examination of the blood and marrow for large granular lymphocytes may be helpful. Infectious and nutritional causes of chronic neutropenia are rare and usually are evident at the time of patient evaluation. In adults, differentiation between chronic idiopathic neutropenia and the myelodysplastic syndromes may be the most difficult. Abnormalities in other cell lines (e.g., anemia with poikilocytosis, anisocytosis, basophilic stippling, and thrombocytopenia, pseudo–Pelger-Huët cells), low proportions of blast cells in the marrow, dysmorphic granulocyte and erythroid precursors, and clonal chromosomal abnormalities indicate myelodysplasia, particularly in older patients. Investigations of the mechanism of neutropenia with marrow and blood kinetic studies, in vitro marrow cultures, measurements of marrow granulocyte reserves, and indirect measurements of marrow proliferative activity may be useful in defining mechanisms of neutropenia, but are not widely available.