Skip to Main Content

1-112 of 112 Results

eFigure 9โ€“19. Normal lung perfusion. A routine examination may include as many as eight viewsโ€“ anterior, posterior, right and left anterior and posterior obliques, and both right and left laterals (A to H). Some physicians prefer to omit the anterior obliques; others do not include the laterals. There is general agreement that the posterior obliques are the most valuable views. When the patient is injected in the supine position, the radioactive particles are evenly distributed throughout the lungs, with a gently increasing gradient of activity from the upper anterior to the lower posterior lung fields. The cardiac and mediastinal spaces between the lungs have a configuration in the combined anterior and posterior views similar to that of the respective area in the posteroanterior CXR. Cardiomegaly and mediastinal masses will cause distortions that are common to both examinations. An enlarged cardiac space may be caused by cardiomegaly and by effusions or other conditions of the pericardial sac and adjacent pleural cavity. If the patient is rotated, the lung images may override and cause a false defect, which will disappear when the patient is repositioned accurately. However, a true lesion is unlikely if seen in only one view of a complete study. (Reproduced, with permission, from Baum S et al. Atlas of Nuclear Medicine Imaging, 2nd ed. Originally published by Appleton & Lange. Copyright ยฉ 1992 by The McGraw-Hill Companies, Inc.) A normal lung perfusion scan shows normal perfusion in six different views of the lungs.

Current Medical Diagnosis & Treatment 2025 > Pulmonary Venous Thromboembolism

View in Context

eFigure 9โ€“20. Normal lung ventilation with xenon-133. With the patient's single full breath, inhaled radioxenon is evenly distributed to all lung areas, reaching the terminal airways and alveoli in the normal patient (A, posterior view). There is a less noticeable gradient of activity from the upper to the lower lung fields than is seen in perfusion lung images. Fifteen-second images obtained during closed-system rebreathing of a xenonโ€“oxygen mixture show uniform distribution at 120 seconds (B). Serial 15-second frames after switching the patient to room air breathing (C to G) show a homogeneous pattern of washout from all lung areas. This sequence mainly evaluates the posterior lung regions. To better localize gas trapping in specific lung segments or more anterior regions, the acquisition may be modified after the rebreathing phase by rotating the patient into posterior oblique positions. Selected images from a complete study include single breath (H, posterior view), the late phase of rebreathing (I, posterior view), posterior washout (J), left posterior oblique washout (K), and right posterior oblique washout (L). No gas is retained in this patient, which is normal, but in obstructive airway disease gas retention persists and is better localized in the oblique views than in a posterior view alone. A small amount of alveolar xenon normally crosses the alveolar membrane to reach the blood and be distributed throughout the body. Because it is highly soluble in lipids, xenon accumulates in adipose tissue, including the liver, which is faintly seen with prolonged rebreathing. Liver activity should not be mistaken for delayed washout of xenon from the base of the lung. Occasionally, splenic blood pool radioactivity or swallowed xenon in the stomach may also be seen. (SIN BRE = single breath, L REB = late rebreathe, WO = washout.) (Reproduced with permission from Grippi MA, Elias JA, Fishman JA, Kotloff RM, Pack AI, Senior RM, Siegel MD. Fishman's Pulmonary Diseases and Disorders, 5e. 2015.) Four examples of normal ventilation scans compared with eight examples of abnormal scans.

Current Medical Diagnosis & Treatment 2025 > Pulmonary Venous Thromboembolism

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“17. Life cycle of Entamoeba histolytica. Cysts and trophozoites are passed in feces . Cysts are typically found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. Excystation occurs in the small intestine and trophozoites are released, which migrate to the large intestine. The trophozoites multiply by binary fission and produce cysts , and both stages are passed in the feces . Because of the protection conferred by their walls, the cysts can survive days to weeks in the external environment and are responsible for transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body and would not survive exposure to the gastric environment if ingested. In many cases, the trophozoites remain confined to the intestinal lumen (: noninvasive infection) of individuals who are asymptomatic carriers, passing cysts in their stool. In some patients, the trophozoites invade the intestinal mucosa (: intestinal disease) or through the bloodstream, extraintestinal sites such as the liver, brain, and lungs (: extraintestinal disease), with resultant pathologic manifestations. It has been established that the invasive and noninvasive forms represent two separate species, respectively E histolytica and E dispar. These two species are morphologically indistinguishable unless E histolytica is observed with ingested RBCs (erythrophagocytosis). Transmission can also occur through exposure to fecal matter during sexual contact (in which case not only cysts, but also trophozoites could prove infective). (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Entamoeba histolytica.

Current Medical Diagnosis & Treatment 2025 > Amebiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“28. Life cycle of Paragonimus westermani (lung fluke). The eggs are excreted unembryonated in the sputum, or alternately, they are swallowed and passed with stool . In the external environment, the eggs become embryonated , and miracidia hatch and seek the first intermediate host, a snail, and penetrate its soft tissues . Miracidia go through several developmental stages inside the snail : sporocysts , rediae , with the latter giving rise to many cercariae , which emerge from the snail. The cercariae invade the second intermediate host, a crustacean such as a crab or crayfish, where they encyst and become metacercariae. This is the infective stage for the mammalian host . Human infection with P westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite . The metacercariae excyst in the duodenum , penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults (7.5โ€“12 mm by 4โ€“6 mm). The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycle is not achieved because the eggs laid cannot exit these sites. Time from infection to oviposition is 65โ€“90 days. Infections may persist for 20 years in humans. Animals such as pigs, dogs, and a variety of feline species can also harbor P westermani. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of P westermani.

Current Medical Diagnosis & Treatment 2025 > Paragonimiasis

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“32. Life cycle of Echinococcus. The adult Echinococcus granulosus (3โ€“6 mm long) resides in the small bowel of the definitive hosts, dogs, or other canids. Gravid proglottids release eggs that are passed in the feces. After ingestion by a suitable intermediate host (under natural conditions: sheep, goat, swine, cattle, horses, camel), the egg hatches in the small bowel and releases an oncosphere that penetrates the intestinal wall and migrates through the circulatory system into various organs, especially the liver and lungs. In these organs, the oncosphere develops into a cyst that enlarges gradually, producing protoscolices and daughter cysts that fill the cyst interior. The definitive host becomes infected by ingesting the cyst-containing organs of the infected intermediate host. After ingestion, the protoscolices evaginate, attach to the intestinal mucosa , and develop into adult stages in 32โ€“80 days. The same life cycle occurs with Echinococcus multilocularis (1.2โ€“3.7 mm), with the following differences: the definitive hosts are foxes, and to a lesser extent dogs, cats, coyotes, and wolves; the intermediate host are small rodents; and larval growth (in the liver) remains indefinitely in the proliferative stage, resulting in invasion of the surrounding tissues. With Echinococcus vogeli (up to 5.6 mm long), the definitive hosts are bush dogs and dogs; the intermediate hosts are rodents; and the larval stage (in the liver, lungs and other organs) develops both externally and internally, resulting in multiple vesicles. Echinococcus oligarthrus (up to 2.9 mm long) has a life cycle that involves wild felids as definitive hosts and rodents as intermediate hosts. Humans become infected by ingesting eggs , with resulting release of oncospheres in the intestine and the development of cysts , , , , , in various organs. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of cystic echinococcosis.

Current Medical Diagnosis & Treatment 2025 > Invasive Cestode Infections

View in Context

eFigure 37โ€“39. Life cycles of Ancylostoma duodenale and Necator americanus (human hookworms). Eggs are passed in the stool , and under favorable conditions (moisture, warmth, shade), larvae hatch in 1โ€“2 days. The released rhabditiform larvae grow in the feces or the soil, or both , and after 5โ€“10 days (and two molts) they become filariform (third-stage) larvae that are infective . These infective larvae can survive 3โ€“4 weeks in favorable environmental conditions. On contact with the human host, the larvae penetrate the skin and are carried through the blood vessels to the heart and then to the lungs. They penetrate into the pulmonary alveoli, ascend the bronchial tree to the pharynx, and are swallowed . The larvae reach the small intestine, where they reside and mature into adults. Adult worms live in the lumen of the small intestine, where they attach to the intestinal wall with resultant blood loss by the host . Most adult worms are eliminated in 1โ€“2 years, but the longevity may reach several years. Some A duodenale larvae, following penetration of the host skin, can become dormant (in the intestine or muscle). In addition, infection by A duodenale may probably also occur by the oral and transmammary route. N americanus, however, requires a transpulmonary migration phase. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of intestinal hookworm.

Current Medical Diagnosis & Treatment 2025 > Hookworm Disease

View in Context

eFigure 37โ€“39. Life cycles of Ancylostoma duodenale and Necator americanus (human hookworms). Eggs are passed in the stool , and under favorable conditions (moisture, warmth, shade), larvae hatch in 1โ€“2 days. The released rhabditiform larvae grow in the feces or the soil, or both , and after 5โ€“10 days (and two molts) they become filariform (third-stage) larvae that are infective . These infective larvae can survive 3โ€“4 weeks in favorable environmental conditions. On contact with the human host, the larvae penetrate the skin and are carried through the blood vessels to the heart and then to the lungs. They penetrate into the pulmonary alveoli, ascend the bronchial tree to the pharynx, and are swallowed . The larvae reach the small intestine, where they reside and mature into adults. Adult worms live in the lumen of the small intestine, where they attach to the intestinal wall with resultant blood loss by the host . Most adult worms are eliminated in 1โ€“2 years, but the longevity may reach several years. Some A duodenale larvae, following penetration of the host skin, can become dormant (in the intestine or muscle). In addition, infection by A duodenale may probably also occur by the oral and transmammary route. N americanus, however, requires a transpulmonary migration phase. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of intestinal hookworm.

Current Medical Diagnosis & Treatment 2025 > Hookworm Disease

View in Context

eFigure 37โ€“39. Life cycles of Ancylostoma duodenale and Necator americanus (human hookworms). Eggs are passed in the stool , and under favorable conditions (moisture, warmth, shade), larvae hatch in 1โ€“2 days. The released rhabditiform larvae grow in the feces or the soil, or both , and after 5โ€“10 days (and two molts) they become filariform (third-stage) larvae that are infective . These infective larvae can survive 3โ€“4 weeks in favorable environmental conditions. On contact with the human host, the larvae penetrate the skin and are carried through the blood vessels to the heart and then to the lungs. They penetrate into the pulmonary alveoli, ascend the bronchial tree to the pharynx, and are swallowed . The larvae reach the small intestine, where they reside and mature into adults. Adult worms live in the lumen of the small intestine, where they attach to the intestinal wall with resultant blood loss by the host . Most adult worms are eliminated in 1โ€“2 years, but the longevity may reach several years. Some A duodenale larvae, following penetration of the host skin, can become dormant (in the intestine or muscle). In addition, infection by A duodenale may probably also occur by the oral and transmammary route. N americanus, however, requires a transpulmonary migration phase. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of intestinal hookworm.

Current Medical Diagnosis & Treatment 2025 > Hookworm Disease

View in Context

eFigure 37โ€“39. Life cycles of Ancylostoma duodenale and Necator americanus (human hookworms). Eggs are passed in the stool , and under favorable conditions (moisture, warmth, shade), larvae hatch in 1โ€“2 days. The released rhabditiform larvae grow in the feces or the soil, or both , and after 5โ€“10 days (and two molts) they become filariform (third-stage) larvae that are infective . These infective larvae can survive 3โ€“4 weeks in favorable environmental conditions. On contact with the human host, the larvae penetrate the skin and are carried through the blood vessels to the heart and then to the lungs. They penetrate into the pulmonary alveoli, ascend the bronchial tree to the pharynx, and are swallowed . The larvae reach the small intestine, where they reside and mature into adults. Adult worms live in the lumen of the small intestine, where they attach to the intestinal wall with resultant blood loss by the host . Most adult worms are eliminated in 1โ€“2 years, but the longevity may reach several years. Some A duodenale larvae, following penetration of the host skin, can become dormant (in the intestine or muscle). In addition, infection by A duodenale may probably also occur by the oral and transmammary route. N americanus, however, requires a transpulmonary migration phase. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of intestinal hookworm.

Current Medical Diagnosis & Treatment 2025 > Hookworm Disease

View in Context

eFigure 37โ€“39. Life cycles of Ancylostoma duodenale and Necator americanus (human hookworms). Eggs are passed in the stool , and under favorable conditions (moisture, warmth, shade), larvae hatch in 1โ€“2 days. The released rhabditiform larvae grow in the feces or the soil, or both , and after 5โ€“10 days (and two molts) they become filariform (third-stage) larvae that are infective . These infective larvae can survive 3โ€“4 weeks in favorable environmental conditions. On contact with the human host, the larvae penetrate the skin and are carried through the blood vessels to the heart and then to the lungs. They penetrate into the pulmonary alveoli, ascend the bronchial tree to the pharynx, and are swallowed . The larvae reach the small intestine, where they reside and mature into adults. Adult worms live in the lumen of the small intestine, where they attach to the intestinal wall with resultant blood loss by the host . Most adult worms are eliminated in 1โ€“2 years, but the longevity may reach several years. Some A duodenale larvae, following penetration of the host skin, can become dormant (in the intestine or muscle). In addition, infection by A duodenale may probably also occur by the oral and transmammary route. N americanus, however, requires a transpulmonary migration phase. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of intestinal hookworm.

Current Medical Diagnosis & Treatment 2025 > Hookworm Disease

View in Context

eFigure 37โ€“39. Life cycles of Ancylostoma duodenale and Necator americanus (human hookworms). Eggs are passed in the stool , and under favorable conditions (moisture, warmth, shade), larvae hatch in 1โ€“2 days. The released rhabditiform larvae grow in the feces or the soil, or both , and after 5โ€“10 days (and two molts) they become filariform (third-stage) larvae that are infective . These infective larvae can survive 3โ€“4 weeks in favorable environmental conditions. On contact with the human host, the larvae penetrate the skin and are carried through the blood vessels to the heart and then to the lungs. They penetrate into the pulmonary alveoli, ascend the bronchial tree to the pharynx, and are swallowed . The larvae reach the small intestine, where they reside and mature into adults. Adult worms live in the lumen of the small intestine, where they attach to the intestinal wall with resultant blood loss by the host . Most adult worms are eliminated in 1โ€“2 years, but the longevity may reach several years. Some A duodenale larvae, following penetration of the host skin, can become dormant (in the intestine or muscle). In addition, infection by A duodenale may probably also occur by the oral and transmammary route. N americanus, however, requires a transpulmonary migration phase. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of intestinal hookworm.

Current Medical Diagnosis & Treatment 2025 > Hookworm Disease

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context

eFigure 37โ€“40. Life cycle of Strongyloides stercoralis (small roundworm of humans). The Strongyloides life cycle is more complex than that of most nematodes with its alternation between free-living and parasitic cycles, and its potential for autoinfection and multiplication within the host. Two types of cycles exist. Free-living cycle: The rhabditiform larvae passed in the stool (see โ€œParasitic cycleโ€ below) can either become infective filariform larvae (direct development) , or free-living adult males and females that mate and produce eggs from which rhabditiform larvae hatch and eventually become infective filariform larvae . The filariform larvae penetrate the human host skin to initiate the parasitic cycle (see below) . Parasitic cycle: Filariform larvae in contaminated soil penetrate the human skin , and by various, often random routes, migrate to the small intestine . Historically it was believed that the L3 larvae migrate via the bloodstream to the lungs, where they are eventually coughed up and swallowed. However, there is also evidence that L3 larvae can migrate directly to the intestine via connective tissues. In the small intestine, they molt twice and become adult female worms . The females live threaded in the epithelium of the small intestine and by parthenogenesis produce eggs , which yield rhabditiform larvae. The rhabditiform larvae can either be passed in the stool (see โ€œFree-living cycleโ€ above), or can cause autoinfection . In autoinfection, the rhabditiform larvae become infective filariform larvae, which can penetrate either the intestinal mucosa (internal autoinfection) or the skin of the perianal area (external autoinfection); in either case, the filariform larvae may disseminate throughout the body. To date, occurrence of autoinfection in humans with helminthic infections is recognized only in S stercoralis and Capillaria philippinensis infections. In the case of Strongyloides, autoinfection may explain the possibility of persistent infections for many years in persons who have not been in an endemic area and of hyperinfections in immunodepressed individuals. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Strongyloides.

Current Medical Diagnosis & Treatment 2025 > Strongyloidiasis

View in Context