++

Infectious diseases cause significant morbidity and mortality, especially in individuals who are most vulnerable to illness: the very young, the elderly, the immunocompromised, and the disenfranchised.

++

The pathogenesis of infectious diseases is dependent on the relationship among the human host, the infectious agent, and the external environment. Figure 4–1 portrays a host-agent-environment paradigm for the study of infectious diseases. The infectious agent can be either exogenous (ie, not normally found on or in the body) or endogenous (ie, one that may be routinely cultured from a particular anatomic site but that does not normally cause disease in the host). Infection results when an exogenous agent is introduced into a host from the environment or when an endogenous agent overcomes innate host immunity to cause disease. Host susceptibility plays an important role in either of these settings.

++
Figure 4–1
Graphic Jump Location

The fundamental relationships involved in the host-agent-environment interaction model. In the host, pathogenetic mechanisms extend from the level of populations (eg, person-to-person transmission) to the level of cellular and molecular processes (eg, genetic susceptibility).

++

The environment includes vectors (insects and other carriers that transmit infectious agents) and zoonotic hosts or reservoirs (animals that harbor infectious agents and often act to amplify the infectious agent). For example, the white-footed mouse (Peromyscus leucopus) serves as an animal reservoir for Borrelia burgdorferi, the bacterium that causes Lyme disease. The Ixodes tick serves as an insect vector. Infection in the mouse is asymptomatic, and the bacteria can multiply to high levels in this animal. When the tick larva feeds on an infected mouse, it becomes secondarily infected with B burgdorferi, and this infection persists when the tick molts into a nymph. Subsequently, when an infected nymph feeds on a human, the bacterium is transmitted into the host bloodstream, causing disease.

++

The study of infectious diseases requires understanding of pathogenesis at the level of the population, the individual, the cell, and the gene. For example, at the population level, the spread of tuberculosis in the community is related to the social interactions of an infectious human host. Outbreaks of tuberculosis have occurred in homeless shelters, prisons, bars, and nursing homes when an index case comes in close contact with susceptible persons. At the individual level, tuberculosis results from inhalation of respiratory droplets containing airborne tubercle bacilli. At the cellular level, these bacilli activate T cells, which play a critical role in containing the infection. Individuals with an impaired T-cell response (eg, those infected with HIV) are at particularly high risk for primary tuberculosis at the time of the initial infection or for reactivation of latent tuberculosis as their immunity wanes. Finally, at the genetic level, individuals with specific polymorphisms in a macrophage protein gene may be at significantly higher risk for pulmonary tuberculosis.

++

Specific microorganisms have a tendency to cause certain ...

Want access to your institution's subscription?

Sign in to your MyAccess Account while you are actively authenticated on this website via your institution (you will be able to tell by looking in the top right corner of any page – if you see your institution’s name, you are authenticated). You will then be able to access your institute’s content/subscription for 90 days from any location, after which you must repeat this process for continued access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess account, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessMedicine Full Site: One-Year Subscription

Connect to the full suite of AccessMedicine content and resources including more than 250 examination and procedural videos, patient safety modules, an extensive drug database, Q&A, Case Files, and more.

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessMedicine

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.