++

  • Following a long asymptomatic period, presentation with heart failure or angina.
  • Wide pulse pressure with associated peripheral signs.
  • Diastolic decrescendo murmur at the left sternal border.
  • Left ventricular dilation and hypertrophy with preserved function.
  • Presentation and findings dependent on the rapidity of onset of regurgitation.
  • Diagnosis confirmed and severity estimated by Doppler echocardiography, aortography, magnetic resonance imaging, or computed tomography angiography.

++

Normally, the integrity of the aortic orifice during diastole is maintained by an intact aortic root and firm apposition of the free margins of the three aortic valve cusps. Aortic regurgitation (AR) may therefore be caused by a variety of disorders affecting the valve cusps or the aortic root (or both) (Table 8–1). With rheumatic heart disease becoming less common, nonrheumatic causes currently account for most of the underlying causes of aortic insufficiency, including congenitally malformed aortic valves, infective endocarditis, and connective tissue diseases. Disorders affecting the aortic root also account for a large number of patients with AR. These conditions include cystic medial necrosis, Marfan syndrome, aortic dissection, and inflammatory diseases. Even in the absence of any obvious abnormality of the aortic valve or root, severe systemic hypertension has been reported to cause significant AR.

++
Table Graphic Jump Location
Table 8–1. Causes of Aortic Regurgitation. 
Roberts WC et al. Causes of pure aortic regurgitation in patients having isolated aortic valve replacement at a single US tertiary hospital (1993 to 2005). Circulation. 2006 Aug 1;114(5):422–9.  [PubMed: 16864725]

++

The presentation and findings in patients with AR depend on its severity and rapidity of onset. The hemodynamic effects of acute severe AR are entirely different from the chronic type and the two will be discussed separately.

++

Chronic Aortic Regurgitation

++

In response to the left ventricular volume overload associated with AR, progressive left ventricular dilation occurs. This results in a higher wall stress, which stimulates ventricular hypertrophy and which, in turn, tends to normalize wall stress. Patients with severe AR may have the largest end-diastolic volumes produced by any other heart disease and yet, their end-diastolic pressures are not uniformly elevated. In keeping with the Frank-Starling mechanism, the stroke volume is also increased. Thus, despite the presence of regurgitation, a normal effective forward cardiac output can be maintained. This state persists for several years. Gradually, left ventricular diastolic properties and contractile function start to decline. The adaptive dilation and hypertrophy can ...

Want access to your institution's subscription?

Sign in to your MyAccess Account while you are actively authenticated on this website via your institution (you will be able to tell by looking in the top right corner of any page – if you see your institution’s name, you are authenticated). You will then be able to access your institute’s content/subscription for 90 days from any location, after which you must repeat this process for continued access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess account, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessMedicine Full Site: One-Year Subscription

Connect to the full suite of AccessMedicine content and resources including more than 250 examination and procedural videos, patient safety modules, an extensive drug database, Q&A, Case Files, and more.

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessMedicine

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.