Skip to Main Content

++

Hypoglycemia is most commonly caused by drugs used to treat diabetes mellitus or by exposure to other drugs, including alcohol. However, a number of other disorders, including critical organ failure, sepsis and inanition, hormone deficiencies, non–beta-cell tumors, insulinoma, and prior gastric surgery, may cause hypoglycemia (Table 345-1). Hypoglycemia is most convincingly documented by Whipple's triad: (1) symptoms consistent with hypoglycemia, (2) a low plasma glucose concentration measured with a precise method (not a glucose monitor), and (3) relief of those symptoms after the plasma glucose level is raised. The lower limit of the fasting plasma glucose concentration is normally approximately 70 mg/dL (3.9 mmol/L), but substantially lower venous glucose levels occur normally, late after a meal. Glucose levels <55 mg/dL (3.0 mmol/L) with symptoms that are relieved promptly after the glucose level is raised document hypoglycemia. Hypoglycemia can cause serious morbidity; if severe and prolonged, it can be fatal. It should be considered in any patient with episodes of confusion, an altered level of consciousness, or a seizure.

++
Table Graphic Jump Location
Table 345-1 Causes of Hypoglycemia in Adults
++

Glucose is an obligate metabolic fuel for the brain under physiologic conditions. The brain cannot synthesize glucose or store more than a few minutes' supply as glycogen and therefore requires a continuous supply of glucose from the arterial circulation. As the arterial plasma glucose concentration falls below the physiologic range, blood-to-brain glucose transport becomes insufficient to support brain energy metabolism and function. However, redundant glucose counterregulatory mechanisms normally prevent or rapidly correct hypoglycemia.

++

Plasma glucose concentrations are normally maintained within a relatively narrow range, roughly 70–110 mg/dL (3.9–6.1 mmol/L) in the fasting state with transient higher excursions after a meal, despite wide variations in exogenous glucose delivery from meals and in endogenous glucose utilization by, for example, exercising muscle. Between meals and during fasting, plasma glucose levels are maintained by endogenous glucose production, hepatic glycogenolysis, and hepatic (and renal) gluconeogenesis (Fig. 345-1). Although hepatic glycogen stores are usually sufficient to maintain plasma glucose levels for approximately 8 h, this time period can be shorter if glucose demand is increased by exercise or if glycogen stores are depleted by illness or starvation.

++
Figure 345-1
Graphic Jump Location

Physiology of glucose counterregulation—the mechanisms that normally prevent or rapidly correct hypoglycemia. In insulin-deficient diabetes, the key counterregulatory responses—suppression of insulin and increase of glucagon—are lost, and the stimulation of sympathoadrenal outflow is attenuated.

++

Gluconeogenesis normally requires low insulin levels and the presence of anti-insulin (counterregulatory) hormones, together ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.