++

The field of human biology has progressed over the last three centuries, largely as a result of the reductionist approach to the scientific problems that challenge the discipline. Biologists study the experimental response of a variable of interest in a cell or organism while holding all other variables constant. In this way, it is possible to dissect the individual components of a biologic system and assume that a thorough understanding of a specific component (e.g., an enzyme or a transcription factor) will provide sufficient insight to explain the global behavior of that system (e.g., a metabolic pathway or a gene network, respectively). Biologic systems are, however, much more complex and manifest behaviors that frequently (if not invariably) cannot be predicted from knowledge of their component parts characterized in isolation. Growing recognition of this shortcoming of conventional biologic research has led to the development of a new discipline, systems biology, that is defined as the holistic study of living organisms or their cellular or molecular network components to predict precisely their response to perturbations. Concepts of systems biology can be applied readily to human disease and therapy and define the field of systems pathobiology, in which genetic or environmental perturbations produce disease and drug perturbations restore normal system behavior.

++

Systems biology evolved from the field of systems engineering, in which a linked collection of component parts constitute a network whose output the engineer wishes to predict. The simple example of an electronic circuit can be used to illustrate some basic systems engineering concepts. All the individual elements of the circuit—resistors, capacitors, transistors—have well-defined properties that can be characterized precisely. However, they can be linked (wired or configured) in a variety of ways, each of which yields a circuit whose response to voltage applied across it is different from the response of every other configuration. To predict the circuit's (i.e., system's) behavior, the engineer must study its response to perturbation (e.g., voltage applied across it) holistically rather than its individual components' responses to that perturbation. Viewed another way, the resulting behavior of the system is greater than (or different from) the simple sum of its parts, and systems engineering utilizes rigorous mathematical approaches to predict these complex, often nonlinear, responses. By analogy to biologic systems, one can reason that detailed knowledge of a single enzyme in a metabolic pathway or of a single transcription factor in a gene network will not provide sufficient detail to predict the output of that metabolic pathway or transcriptional network, respectively. Only a systems-based approach will suffice.

++

It has taken biologists a long time to appreciate the importance of systems approaches to biomedical problems. Reductionism has reigned supreme for many decades, largely because it is experimentally and analytically simpler than holism, and because it has provided insights into biologic mechanisms and disease pathogenesis, and has led to successful therapies. However, reductionism cannot solve all biomedical problems. For example, the so-called off-target effects of new drugs that frequently limit ...

Want access to your institution's subscription?

Sign in to your MyAccess Account while you are actively authenticated on this website via your institution (you will be able to tell by looking in the top right corner of any page – if you see your institution’s name, you are authenticated). You will then be able to access your institute’s content/subscription for 90 days from any location, after which you must repeat this process for continued access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess account, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessMedicine Full Site: One-Year Subscription

Connect to the full suite of AccessMedicine content and resources including more than 250 examination and procedural videos, patient safety modules, an extensive drug database, Q&A, Case Files, and more.

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessMedicine

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.