Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!

1-28 of 28 Results

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–9. Life cycle of Plasmodium. The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host . Sporozoites infect liver cells  and mature into schizonts , which rupture and release merozoites . (Of note, in Plasmodium vivax and Plasmodium ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony ), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony ). Merozoites infect RBCs . The ring stage trophozoites mature into schizonts, which rupture releasing merozoites . Some parasites differentiate into sexual erythrocytic stages (gametocytes) . Blood stage parasites are responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal . The parasites’ multiplication in the mosquito is known as the sporogonic cycle . While in the mosquito’s stomach, the microgametes penetrate the macrogametes generating zygotes . The zygotes in turn become motile and elongated (ookinetes) , which invade the midgut wall of the mosquito where they develop into oocysts . The oocysts grow, rupture, and release sporozoites , which make their way to the mosquito’s salivary glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle. (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of malarial parasite.

Current Medical Diagnosis & Treatment 2024 > Malaria

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context