Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android. Learn more here!

1-44 of 44 Results

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–14. Life cycle of Toxoplasma gondii. The only known definitive hosts for T gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces . Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts . Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites . Cats become infected after consuming intermediate hosts harboring tissue cysts . Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment . Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts . consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) . blood transfusion or organ transplantation . transplacentally from mother to fetus . In the human host, the parasites form tissue cysts, most commonly in skeletal muscle, myocardium, brain, and eyes; these cysts may remain throughout the life of the host. Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens . Diagnosis of congenital infections can be achieved by detecting T gondii DNA in amniotic fluid using molecular methods such as PCR . (From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Toxoplasma gondii.

Current Medical Diagnosis & Treatment 2024 > Toxoplasmosis

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context

eFigure 37–29. Life cycle of Hymenolepis diminuta and Hymenolepis nana. A: Eggs of H nana are immediately infective when passed with the stool and cannot survive more than 10 days in the external environment . When eggs are ingested by an arthropod intermediate host  (various species of beetles and fleas may serve as intermediate hosts), they develop into cysticercoids, which can infect humans or rodents upon ingestion  and develop into adults in the small intestine. A morphologically identical variant, H nana var. fraterna, infects rodents and uses arthropods as intermediate hosts. When eggs are ingested  (in contaminated food or water or from hands contaminated with feces), the oncospheres contained in the eggs are released. The oncospheres (hexacanth larvae) penetrate the intestinal villus and develop into cysticercoid larvae . Upon rupture of the villus, the cysticercoids return to the intestinal lumen, evaginate their scoleces , attach to the intestinal mucosa and develop into adults that reside in the ileal portion of the small intestine producing gravid proglottids . Eggs are passed in the stool when released from proglottids through its genital atrium or when proglottids disintegrate in the small intestine . An alternate mode of infection consists of internal autoinfection, where the eggs release their hexacanth embryo, which penetrates the villus continuing the infective cycle without passage through the external environment . The life span of adult worms is 4–6 weeks, but internal autoinfection allows the infection to persist for years. B: Eggs of H diminuta are passed out in the feces of the infected definitive host (rodents, man) . The mature eggs are ingested by an intermediate host (various arthropod adults or larvae) , and oncospheres are released from the eggs and penetrate the intestinal wall of the host , which develop into cysticercoid larvae. Species from the genus Tribolium are common intermediate hosts for H diminuta. The cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. H diminuta infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae . Humans can be accidentally infected through the ingestion of insects in precooked cereals, or other food items, and directly from the environment (eg, oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scoleces  occurs shortly after the cysticercoid larvae are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasites occurs within 20 days and the adult worms can reach an average of 30 cm in length . Eggs are released in the small intestine from gravid proglottids  that disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host’s feces .(From Global Health, Division of Parasitic Diseases and Malaria, CDC.) A flowchart of the life cycle of Hymenolepis nana.

Current Medical Diagnosis & Treatment 2024 > Noninvasive Cestode Infections

View in Context